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Abstract. In this paper we propose a new variational model for image denoising and segmentation of both gray
and color images. This method is inspired by the complex Ginzburg–Landau model and the weighted bounded
variation model. Compared with active contour methods, our new algorithm can detect non-closed edges as well as
quadruple junctions, and the initialization is completely automatic. The existence of the minimizer for our energy
functional is proved. Numerical results show the effectiveness of our proposed model in image denoising and
segmentation.
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1. Introduction

Image denoising and segmentation are fundamental
problems in both image processing and computer vi-
sion with numerous applications. The aim of image
denoising is to smooth a noisy image without losing
significant features, while the aim of image segmenta-
tion is to divide an image into several meaningful re-
gions such that each region is relatively homogeneous.
These two problems are always correlated.

Variational methods have been extensively studied
in image denoising and segmentation because of their
flexibility in modeling and various advantages in the
numerical implementation. The basic idea of varia-

tional methods is to minimize an energy functional.
This functional generally will depend on the features of
the image. The classical way to solve the minimization
problem is to solve the corresponding Euler-Lagrange
equation or its associated flow.

The active contour/snake model is one of the most
well known variational models for image segmentation
[6, 10, 13]. However, this model has one major disad-
vantage: the result is heavily influenced by the choice
of initial contour. Given an initial curve, during the
evolution, the energy may evolve to its global or lo-
cal minimum. Only the curve corresponding to global
minimum is the real boundary of the object(s). Thus,
the choice of initial curve is very crucial. Moreover,
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in numerical experiments, the level set method is usu-
ally used, but this method is computationally expensive
since it works in higher dimension space than the image
space itself.

Another variational method for image denoising and
segmentation is based on diffusion. Chen and Wunderli
[12] proposed a weighted Bounded Variation (BV)
model for gray image restoration by minimizing the
following energy functional

E(u) =
∫

�

g(x)|∇u| + β

2

∫
�

(u − f )2 dx,

where f is the observed gray image, g(x) is the diffu-
sion coefficient, and β is a positive parameter.

There are many approaches for color image denois-
ing or segmentation [5, 7, 9, 17–19]. We shall use the
Red-Green-Blue (RGB) model of color images here. In
what follows, for each pixel p = (x1, x2), the vector-
valued u(p) = (u1(p), u2(p), u3(p)) represents the in-
tensity of the three primary colors separately. Each
monochromatic component ui (i = 1, 2, 3) is one
channel.

In this paper we shall propose a new variational
model for image denoising and segmentation of both
gray and color images. This model is inspired by
the complex Ginzburg–Landau (GL) model and the
weighted bounded variation model. The remainder of
the paper is organized as follows: In Section 2, we give
some preliminaries and definitions of vector-valued BV
functions. In Sections 3 and 4, the new model for gray
and color images are proposed respectively. Theoret-
ical results, iterating scheme and experimental results
are given in both sections. Finally, we conclude our
paper in Section 5.

2. Preliminaries and Definitions of Vector-Valued
BV Functions

Many image processing methods are based on a mini-
mization of functional involving the bounded variation
norm [2–3, 8, 12, 15, 16, 20]. The space of functions
with bounded variation is called BV space. It is widely
accepted that the BV space is a good model for im-
age processing since the real images may have jumps.
The BV model performs better than the correspond-
ing Sobolev models in the aspects of keeping impor-
tant information such as edges. For instance, image
denoising can be efficiently done by minimizing the
Rudin-Osher-Fatemi (ROF) functional in the category
of BV space [16]. Sometimes, substituting BV space
by weighted BV space will give even better results in
image denoising and segmentation [3, 12].

In this paper, we discuss not only gray images but
also color images. Therefore, it is crucial to gener-
alize the definition and basic properties of BV space
to vector-valued functions. In what follows, let � be
a bounded open subset of Rn , and u : � → Rm

be a vector-valued function. Denote the vector-valued
Sobolev space W 1,1(�, Rm) by W 1,1(�), L1(�, Rm)
by L1(�), etc.

Definition 2.1. (BV for vector-valued functions). As-
sume u ∈ L1(�) and the components of u are denoted
by uα(α = 1, . . . , m). Then we define u ∈ BV (�, Rm)
(BV for short), if u satisfies

|u|BV = sup
φ

{ ∫
�

udiv(φ) dx |φ = (φ1, . . . , φm),

φα ∈ C1
0 (�, Rn), α = 1, . . . , m, |φ(x)| ≤ 1

}

= sup
φ

{∫
�

m∑
α=1

uαdiv(φα) dx |φα

∈ C1
0 (�, Rn),|φ(x)| ≤ 1

}
< ∞,

where φα = (φα
1 , . . . , φα

n ) and |φ(x)| =√∑m
α=1

∑n
i=1 (φα

i )2. With the norm

‖u‖BV = |u|BV + ‖u‖L1(�)

the space of all functions u ∈ BV becomes a Banach
space. If u ∈ BV , |u|BV is called the BV semi-norm
of u, and ‖u‖BV is called the BV norm of u.

If u ∈ W 1,1(�), we have

sup
|φ|≤1

∫
�

m∑
α=1

uαdiv(φα) dx

= sup
|φ|≤1

∫
�

m∑
α=1

n∑
i=1

uα (φα
i )i dx

= sup
|φ|≤1

∫
�

(
−

m∑
α=1

n∑
i=1

uα
i

)
φα

i dx

= sup
|φ|≤1

∫
�

∇u · φ dx,

where ∇u = (∇u1, . . . , ∇um), φ = (φ1, . . . , φm).
Since the supremum in the last equality can be attained
by φ = ∇u

|∇u| , we have

|u|BV =
∫

�

∇u · ∇u

|∇u| dx = ‖∇u‖L1(�) .



A New Diffusion-Based Variational Model for Image Denoising and Segmentation 117

That is to say, if u ∈ W 1,1(�), then ‖u‖W 1,1(�) =
‖u‖BV .

Theorem 2.2 (lower semicontinuity). Let {uk} ⊂
L1(�) be a sequence of BV functions and u ∈ BV ,
if uk → u strongly in L1(�), then

|u|BV ≤ lim inf
k→∞

|uk |BV .

Proof: For fixed φ = (φ1, . . . , φm), φα ∈ C1
0 (�,

Rn), α = 1, . . . , m, |φ(x)| ≤ 1, we have∫
�

m∑
α=1

uα div(φα) dx

= lim
k→∞

∫
�

m∑
α=1

uα
k div(φα) dx

≤ lim inf
k→∞

sup
φα

∫
�

m∑
α=1

uα
k div(φα) dx

= lim inf
k→∞

|uk |BV .

Taking supremum over {φ = (φ1, . . . , φm)|φα ∈
C1

0 (�, Rn), α = 1, . . . , m}, we conclude that

|u|BV ≤ lim inf
k→∞

|uk |BV .

Theorem 2.3 (compactness). Let {uk} be a bounded
vector-valued sequence in BV space. Assume that � ⊂
Rn is such that ∂� is Lipschitz. Then there is a subse-
quence of {uk}, also denoted by {uk}, and a u ∈ BV
such that uk → u strongly in L1(�).

Proof: Similar to [14], we can prove the compactness
theorem for vector-valued BV space.

In our model, the weighted BV norm for vector-
valued image will be used. The definition of weighted
BV functions is given as follows.

Definition 2.4 (weighted BV functions). Assume u ∈
L1(�), and g(x) is a nonnegative function. We define
u ∈ g − BV , if u satisfies

|u|g−BV

= sup

{ ∫
�

m∑
α=1

uα div(φα) dx |φα ∈ C1
0 (�, Rn),

α = 1, . . . , m, |φ(x)| ≤ g

}
< ∞.

If u ∈ g−BV , |u|g−BV is called the g−BV semi-norm
of u.

The lower semicontinuity for g − BV functions can
be proved using the similar method in Theorem 2.2.

3. The Proposed Model for Gray Images

The GL model has shown its efficiency for modeling
many phenomena in physics, especially in the theory
of superconductors [1, 4, 11]. The GL functional is
defined as follows,

Eε(u) = 1

2

∫
�

(
|∇u|2 + 1

2ε2
(1 − |u|2)2

)
dx, (1)

where ε is a small dimensionless constant called the
coherence length which depends only on the material
and the temperature, u is a complex-valued function
indicating the local state of the material: if |u| ≈ 1 the
material is in a superconducting phase, while if |u| ≈ 0
it is in its normal phase (with no superconducting prop-
erty). The normal phase is localized in small regions
called vortices surrounded by superconducting regions
[1]. Our algorithm is inspired by the property that the
GL model is able to detect the normal phase. Thus, nor-
mal and superconducting phases can be distinguished.
In our new model, we expect that the edges correspond
to normal phase and other regions correspond to super-
conducting phase. Hence edges could be detected.

Now assume f : � ⊂ R2 → R be the ob-
served gray image. We should first convert the image
f (x) into a complex-valued function u0. The initial-
ization procedure is as follows. To construct u0, first
we rescale f (x) to the interval [−1, 1] by the formula

v0 = 2 f (x)
255 − 1, and assume w0 =

√
1 − v2

0 , then we
define Re (u0) = v0 and Im (u0) = w0 so that |u0| = 1.
Compared with the construction of initial level set func-
tion (where signed distance function is usually used)
in the active contour method, our initialization is easier
and automatic.

Inspired by the complex GL model and weighted BV
model, we now construct our model by modifying (1).
Firstly, we modify the first term. As analyzed in Section
2, we will use vector-valued g − BV semi-norm to
substitute the Sobolev norm in GL model. Secondly, we
retain the second term since our new model is expected
to have the similar ability to detect the edges as the
normal phase in GL model. In our case, the counterpart
of normal phase is the edges. Finally, in order to keep
the important information in the initial image, we add a
fidelity term

∫
�

|u − u0|2dx in our model. Hence, our
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proposed model is to minimize the following energy in
g − BV ∩ L4(�).

Fε(u) : = μ sup
|φ(x)|≤g

∫
�

u div(φ) dx

+ 1

4ε2

∫
�

(1 − |u|2)2dx

+ λ

2

∫
�

|u − u0|2dx

= μ |u|g−BV

+ 1

4ε2

∫
�

(1 − |u|2)2 dx

+ λ

2

∫
�

|u − u0|2 dx ,

(2)

where g(x) is a diffusion coefficient. In order to pre-
serve edges, our diffusion coefficient is set as

g(x) = 1

1 + |∇(Gσ ∗ f )|2/k2
= 1

1 + |∇Gσ ∗ f |2/k2
,

(3)

where Gσ is the Gaussian kernel with standard devia-
tion σ , and the parameter k models the size of discon-
tinuity. The lager the noise is, the larger we set σ .

In the following, we shall explain further why the
proposed energy functional is defined as (2).

(I) In the first term of (2), g(x) serves the purpose of
selecting which locations to be smoothed. In regions
with small gradient, g(x) is big so that these regions
are smoothed. At the locations with large gradient, g(x)
is small so that these regions are less smoothed. Then
noise can be erased from the noisy images while sharp
edges are kept.

Because of the use of g-BV semi-norm in the
first term, our model performs better in denois-
ing and segmentation than [1] where Sobolev norm
μ

∫
�

g |∇u|2dx is used.
(II) From the second term, it can be derived that

|u| ≈ 1 almost everywhere after enough diffusion
except for the points along the edges of objects, i.e.,
|u| ≈ 1 in smooth regions, and |u| is near zero along
edges.

(III) The third term is a fidelity term which forces u
to be a close approximation of the original image u0.

Let u be a minimizer of Fε(u), then u satisfies the
Euler-Lagrange equation

− μ · div

(
g(x)

∇u

|∇u|
)

− 1

ε2
u (1 − |u|2)

+λ (u − u0) = 0 (4)

in � and we assume the Neumann boundary condition
∂u
∂n = 0 on ∂� (where n is the outward unit normal to
∂�).

In order to solve (4), we use the steepest descent
method. Let u = (v, w), then we get the following
heat flows with respect to the real and imaginary part
of complex-valued image u:

∂v

∂t
= μ · div

(
g(x)

∇v√
|∇v|2 + |∇w|2

)

+ 1

ε2
v (1 − (v2 + w2)) − λ (v − v0), (5)

∂w

∂t
= μ · div

(
g(x)

∇w√
|∇v|2 + |∇w|2

)

+ 1

ε2
w (1 − (v2 + w2)) − λ (w − w0). (6)

with initial value u0 = (v0, w0) and Neumann bound-
ary condition ∂u

∂n = 0 on ∂�.

3.1. Mathematical Results

Theorem 3.1 (existence of the minimizer). There ex-
ists a complex-valued function u∗ ∈ g − BV ∩ L4(�)
minimizing Fε, where ε is a fixed positive constant.

Proof: Rewrite the energy (2) as

Fε(u) = μ |u|g-BV + 1

4ε2

∫
�

(1 − |u|2)2 dx

+ λ

2

∫
�

|u − u0|2 dx .

Since zero is the lower bound of Fε, we can assume
0 ≤ β = infu∈V Fε and let {un} be a complex–
valued minimizing sequence in g − BV ∩ L4(�), i.e.,
limn→∞ Fε(un) = β. Hence there is a constant M > 0
such that

Fε(un) = μ |un|g-BV + 1

4ε2

∫
�

(1 − |un|2)2 dx

+ λ

2

∫
�

|un − u0|2 dx < M. (7)

Since f ∈ L∞(�) (in fact,| f | ≤ 255) , according to
(3) we have g ≥ 1/(1 + C ‖ f ‖2

L∞(�)), where C > 0
is a constant. So we choose δ = 1/(1+ C ‖ f ‖2

L∞(�)).
Since g ≥ δ, we have

μ δ |un|BV ≤ μ |un|g−BV < M.
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So |un|BV is bounded. The formula (7) also implies
that {un} is bounded in both L4(�) and L2(�). Since
the imbedding L2(�) → L1(�) is continuous, {un}
is bounded in L1(�). Then by Definition 2.1, {un}
has bounded BV norm. Therefore Theorem 2.3 shows
that there is a subsequence, also denoted by {un}, and
u∗ ∈ BV (�) such that un → u∗ strongly in L1(�).
Furthermore, by the lower semicontinuity for g − BV
space we get

|u∗|g−BV ≤ lim inf
k→∞

|un|g−BV . (8)

(8) also implies u∗ ∈ g − BV .
On the other hand, from the boundedness of {un} in

L4(�), there is a subsequence, also denoted by {un},
converges weakly to u∗ by the uniqueness of limit.
Hence, u∗ ∈ L4(�). By the lower semi-continuity of
L2 and L4 norm, we obtain∫

�

(1 − |u∗|2)2 dx ≤ lim inf
n→∞

∫
�

(1 − |un|2)2 dx,

(9)∫
�

|u∗ − u0|2 dx ≤ lim inf
n→∞

∫
�

|un − u0|2 dx .

(10)

Formulas (8–10) imply the weak lower semi-
continuity of Fε

Fε(u∗) ≤ lim inf
n→∞ Fε(un) = β.

Therefore, the infimum is attained by u∗ ∈ g − BV ∩
L4(�) and it is a minimizer of the energy Fε.

3.2. Numerical Implementation of the Model

We use finite difference scheme to discretize Eqs. (5)
and (6). Denote the space step by h = 1 and the time
step by τ , we have(

D±
x u

)
i, j = ± [ui±1, j − ui, j ],(

D±
y u

)
i, j = ± [ui, j±1 − ui, j ],

|(D u)i, j | =
√

((D+
x u)i, j )2 + ((D+

y u)i, j )2 + γ ,

where γ is a small number used to avoid division by
zero. To simplify the notations, we will omit the sub-
scripts i, j and use vk, wk to denote vk

i, j , w
k
i, j . The it-

eration formulas are given by

vk+1 = vk + τ

(
Ak + 1

ε2
vk(1 − (vk)2 − (wk)2)

− λ (vk − v0)

)
,

wk+1 = wk + τ

(
Bk + 1

ε2
wk(1 − (vk+1)2−(wk)2)

− λ (wk − w0)

)
,

where

Ak = μ ·
(

D−
x

(
g

D+
x vk√

|D vk |2 + |D wk |2
)

+ D−
y

(
g

D+
y vk√

|D vk |2 + |D wk |2
))

,

Bk = μ ·
(

D−
x

(
g

D+
x wk√

|D vk |2 + |D wk |2
)

+ D−
y

(
g

D+
y wk√

|D vk |2 + |D wk |2
))

.

3.3. Experimental Results

The proposed variational method has been applied to
a variety of synthetic and real gray images. We choose
the parameters as ε = 1, λ = 0.01, τ = 0.1, and μ is
a constant between 0.1 and 5, which should be tuned
from case to case in every image.

In our experiments for gray images, we get v and w

after evolution. The segmented image is displayed by
255·(v2+w2)100 and the denoised image is displayed by
(v+1)·255/2. The reason for using 255·(v2+w2)100 is
as follows: as seen from (II) in the beginning of Section
3, by the second term in (2), u has the following prop-
erty after enough diffusion: |u| ≈ 1 in the smoothed
regions, and |u| is near zero along edges. i.e.,

(v2 + w2)100 ≈
{

1 smoothed regions

0 along edges

Thus,

255 · (v2 + w2)100 ≈
{

255 smoothed regions

0 along edges
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Figure 1. An example of segmentation of a simple image. (a) Original image. (b) Result of segmentation using our model. (c) Result of
segmentation using method proposed in [1]. (μ = 0.1, τ = 0.1, σ = 0.1, k = 0.5, iteration = 5).

Figure 2. An example of segmentation of the image of camera
man. (a) Original image. (b) Result of segmentation. (μ = 0.1, τ =
0.1, σ = 0.1, k = 0.1, iteration = 100).

Therefore, as a result of segmentation, the edges are
displayed in dark while the smoothed regions are in
bright. The reason for using (v + 1) · 255/2 as the
denoised image is that (v + 1) · 255/2 is the rescaling
of v, which is smoothed from the rescaled initial image
v0 by the evolution Eqs. (5) and (6).

In Fig. 1, the four regions of constant intensity (see
Fig. 1(a)) are segmented by two lines (see Fig. 1(b)).
Our proposed model can detect non-closed curves and
quadruple junctions. This result is hard to achieve by
using active contour method or the diffusion model
in [1] by which only the horizontal line can be de-
tected (see Fig. 1(c)). Our model successfully segments
the image of camera man in Fig. 2 and the MRI im-
age of head in Fig. 3. In Fig. 4, gaussian noise with
signal-to-noise-ratio (SNR) 8.4 is added to Fig. 4(a).
Our model yields good results for denoising and
segmentation.

4. The Proposed Model for Color Images

Our method can also be adapted to color images. The
similar energy is used as before, but now the image u is

regarded as a real vector-valued function, i.e., u : � ⊂
R2 → R3, where u = (u1, u2, u3).

The energy functional is written as:

Fε(u) = μ |u|g−BV + 1

4ε2

∫
�

((1 − |u1|2)2

+ (1 − |u2|2)2 + (1 − |u3|2)2)dx

+ λ

2

∫
�

|u − u0|2dx, (11)

where u0 = (u01, u02, u03) : � ⊂ R2 → R3 is ob-
tained by rescaling the observed RGB image f : � ⊂
R2 → R3 to the cube[−1, 1] × [−1, 1] × [−1, 1]
with the formula u0 = 2 f

255 − (1, 1, 1). The diffusion
coefficient g(x) is

g(x) = 1

1 + |∇Gσ ∗ f |2/k2
. (12)

As before, we get the following heat flow for energy
(11) using the steepest descent method.

∂ui

∂t
= μ · div

(
g(x)

∇ui√
|∇u1|2 + |∇u2|2 + |∇u3|2

)

+ 1

ε2
ui (1−|ui |2)−λ (ui − u0i ), i=1, . . . , 3,

(13)

in �, with initial condition u| t=0 = u0 and Neumann
boundary condition ∂u

∂n = 0 on ∂�.

4.1. Mathematical Results

Using the same techniques as in Section 3, with small
modification, we can prove
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Figure 3. An example of segmentation of a medical image. (a) Original image. (b) Result of segmentation. (μ = 0.1, τ = 0.1, σ = 0.1, k = 0.1,

iteration = 100).

Figure 4. An example of image denoising and segmentation. (a) Original image. (b) Image with noise (SNR = 8.4). (c) Result of denoising.
(d): Result of segmentation. (μ = 0.1, τ = 0.1, σ = 1, k = 1, iteration = 70).
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Figure 5. An example of color image denoising and segmentation (a) Original image. (b) Image with noise (SNR = 9.1). (c) Result of denoising.
(d) Result of segmentation. (μ = 3, τ = 0.1, σ = 1, k = 1, iteration = 30).

Figure 6. An example of color image denoising and segmentation (a) Original image. (b) Image with noise (SNR=15.2). (c) Result of denoising.
(d) Result of segmentation. (μ = 3, τ = 0.1, σ = 1, k = 10, iteration = 10).

Theorem 4.1. There exists a vector-valued function
u∗ : � → R3, u∗ ∈ g − BV (�, R3) ∩ L4(�, R3)
minimizing the energy Fε in (11), where ε is a fixed
positive constant.

4.2. Numerical Implementation of the Model

The notations are the same as that in Section 3. The
corresponding iterating scheme for (13) with respect
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Figure 7. An example of medical image segmentation. (a) Original image. (b) Result of segmentation. (μ = 1, τ = 0.1, σ = 0.1, k = 10000,

iteration = 100).

Figure 8. An example of natural image segmentation. (a) Original image. (b) Result of segmentation. (μ = 3, τ = 0.1, σ = 0.1, k = 1,

iteration = 60).

Figure 9. An example of astronaut photography of Earth in Mono Lake, California, USA (STS047-94-32). Courtesy of the Image Science
& Analysis Laboratory, NASA Johnson Space Center. (a) Original image. (b) Result of segmentation. (μ = 3, τ = 0.1, σ = 0.1, k = 0.1,

iteration = 100).
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to each component of u is:

uk+1
1 = uk

1 + τ

·
(

Ak
1 + 1

ε2
uk

1

(
1 − (

uk
1

)2) − λ
(
uk

1 − u01
))

,

uk+1
2 = uk

2 + τ

·
(

Ak
2 + 1

ε2
uk

2

(
1 − (

uk
2

)2) − λ
(
uk

2 − u02
))

,

uk+1
3 = uk

3 + τ

·
(

Ak
3 + 1

ε2
uk

3

(
1 − (

uk
3

)2) − λ
(
uk

3 − u03
))

,

where

Ak
1 = μ ·

(
D−

x

(
g

D+
x uk

1

Bk

)
+ D−

y

(
g

D+
y uk

1

Bk

))
,

Ak
2 = μ ·

(
D−

x

(
g

D+
x uk

2

Bk

)
+ D−

y

(
g

D+
y uk

2

Bk

))
,

Ak
3 = μ ·

(
D−

x

(
g

D+
x uk

3

Bk

)
+ D−

y

(
g

D+
y uk

3

Bk

))
,

Bk =
√∣∣D uk

1

∣∣2 + ∣∣D uk
2

∣∣2 + ∣∣D uk
3

∣∣2 + γ ,

and γ > 0 is a small number used to avoid division by
zero.

4.3. Experimental Results

In our experiments for color images, we get u =
(u1, u2, u3) after evolution. The segmented image is
displayed by 255 · û where û = (u2

1, u2
2, u2

3), and the
denoised image is displayed by (u + (1, 1, 1)) · 255/2.
The reason for using 255 · û is as follows: by the sec-
ond term in (11), after enough diffusion |ui | ≈ 1,

(i = 1, . . . , 3) in the smoothed regions, and there exist
at least one index i ∈ {1, 2, 3} such that |ui | is near
zero along edges. Therefore, û ≈ (1, 1, 1) if and only
if it is in the smoothed regions. Then 255 · û is dis-
played in white in the smoothed regions, and in other
colors along edges. Hence, as a result of segmentation,
the edges are displayed in color contours while the
smoothed regions are in white, or more precisely, al-
most white. The reason for using (u + (1, 1, 1)) ·255/2
as the denoised image is that (u + (1, 1, 1)) · 255/2 is
the rescaling of u, which is smoothed from the initial
rescaled image u0 by the evolution Eq. (13).

In Fig. 5, the original image is contaminated by gaus-
sian noise with SNR = 9.1. Our model successfully

denoises the image and gives the segmentation re-
sult. Compared with usual active contour methods, by
which one must use two level sets to obtain the above
segmentation result, our model is economical and ef-
ficient. In Fig. 6, gaussian noise with SNR=15.2 is
added. The background color varies smoothly from
sea to the cloudy sky. Our model smoothes the back-
ground, so after many times of diffusion, the back-
ground becomes almost white and the penguins are
segmented. The phenomenon is due to the diffusion
coefficient in (12), which is controlled by the gradi-
ent of f . In sharp edges, the gradient is very big, so
the diffusion is very small. Hence, after many times
of diffusion only sharp edges are still retained. More
experimental results are given in Figs. 7 and 8. Our
method successfully detects the edges of the medical
image and the house image. In Fig. 9, an aerial image is
segmented.

5. Conclusions

This paper describes a new method for image denois-
ing and segmentation based on the GL model and the
weighted BV model. When dealing with gray images,
we use complex model which works better than the
corresponding real model. However, for color images,
we use vector-valued model directly without chang-
ing the observed image to image with more channels.
Our numerical results confirm the effectiveness of our
algorithm. Moreover, we have investigated the model
mathematically and the existence of the minimizer to
the energy functionals are proved. However, it remains
to make a complete theoretical study of the associated
flows for our energy functionals. This will be our future
work.
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