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Abstract

In this paper, a noise removal algorithm based on variational method and partial differential equations (PDEs) is proposed. It com-
bines a total variational filter (ROF filter) with a fourth-order PDE filter (LLT filter). The combined algorithm takes the advantage of
both filters since it is able to preserve edges while avoiding the staircase effect in smooth regions. The existence and uniqueness of a solu-
tion to the minimization problem is established. Experimental results illustrate the effectiveness of the model in image restoration.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the problem of image restora-
tion. The essential idea for image restoration is to filter
out noise while preserving important features such as
edges.

In general, an image can be decomposed into two kinds
of areas: smooth regions (regions with a smooth change in
the intensity value), and discontinuities (for example,
jumps such as edges of an object). The discontinuities are
usually the features of interest. Therefore, if an image is
viewed as a function with discontinuities, we should study
this function in a suitable function space. The Sobolev
space fails in this case. The space of functions with
bounded variation, called BV space, is suitable to describe
functions with discontinuities [1]. Here, we recall the defini-
tion of BV space.

Definition 1.1. Let X � Rn be an open subset with Lipschitz
boundary. Define BV(X) (BV space) as the subspace of
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functions u 2 L1(X) such that the following quantity, called
the BV semi-norm, is finite:Z

X
jDuj :¼ sup

Z
X

udivðuÞdxju 2 C1
cðX;RnÞ; juj 6 1

� �
:

With the norm kukBVðXÞ ¼
R

X jDuj þ kukL1ðXÞ;BVðXÞ is a
Banach space [1,2].

Many variational methods in image processing involve
BV space [3–6]. For our purpose, the most related one is
the total variation minimization proposed by Rudin, Osher
and Fatemi [6] (the ROF model):

min
u2BVðXÞ\L2ðXÞ

EðuÞ ¼
Z

X
jDuj þ k

2

Z
X
ðf� uÞ2dx

� �
: ð1:1Þ

The corresponding partial differential equation (PDE) of
(1.1) is a second-order equation. The ROF model does an
excellent job in preserving edges since the diffusion with
this PDE is along edges. The ROF model, together with
its improved version, the weighted ROF model, has been
extensively studied and proven to be efficient for preserving
edges [3,4,7,8].

However, the ROF model often causes ‘staircase’ effects
[4,9,10] since it favors solutions that are piecewise constant.
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Here, staircase means that smooth regions with noise are
processed into piecewise constant regions after using the
ROF model. Staircase solutions fail to satisfy the eye and
they can develop ‘false edges’ that do not exist in the true
image.

In the recent decade, high-order PDEs (typically, fourth-
order PDEs) have been introduced in image restoration
[11–19]. The theoretical analysis in [20,21] shows that
fourth-order equations have advantages over second-order
equations in some aspects. First of all, fourth-order linear
or nonlinear diffusion damps oscillations much faster than
second-order diffusion. Furthermore, fourth-order PDEs
usually evolve an observed image toward an ‘almost smooth’
image. This is believed to be a better approximation to a
natural image than a piecewise constant approximation in
smooth regions [13]. Therefore, the staircase effect will be
reduced and the image will look more natural. This has
been verified numerically [13,14,17]. Thus, we can reason-
ably conclude that fourth-order diffusion performs better
than the ROF model in the aspect of recovery of smooth
regions.

An example of a fourth-order equation is the model pro-
posed by Lysaker, Lundervold and Tai (the LLT model).
They propose a second-order functional:

min
u2W 2;1ðXÞ\L2 Xð Þ

EðuÞ ¼
Z

X
jr2ujdxþ k

2

Z
X
ðf� uÞ2dx

� �
;

ð1:2Þ
where jr2uj :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xx þ u2
xy þ u2

yx þ u2
yy

q
. The corresponding

diffusion equation of (1.2) is a fourth-order filter.
It is natural to investigate a model combining the advan-

tages of the ROF model and the LLT model. Lysaker and
Tai [22] proposed an iterative restoration method making
use of a weighting function to combine the results of model
(1.1) and (1.2). However, the construction of the weighting
function is not quite intuitive. In this paper, we aim to con-
struct an energy functional that combines (1.1) and (1.2)
more naturally and efficiently.

Similar to the case where the Sobolev space W1,1(X) is
replaced by BV(X), the Sobolev space W2,1(X) can be
replaced by a new space called BV2 space which is com-
posed of functions with bounded variation in the second-
order derivatives [16,17]. The definition of BV2 space is
given as follows.

Definition 1.2. Let X � Rn be an open subset with Lipschitz
boundary. Define BV2(X) as the subspace of functions
u 2 L1(X) such that the following quantity, called the BV2

semi-norm, is finite:
Z
X
jD2uj :¼ sup

Z
X

Xn

i;j¼1

uojoiu
ijdxju 2 C2

cðX;Rn�nÞ; juj 6 1

( )
;

where juðxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Pn
j¼1ðuijÞ2

q
.

Similar to weighted BV space, we introduce weighted
BV2 space denoted by g � BV2(X). A function u belongs
to g � BV2(X) if u 2 L1(X) and satisfies
Z
X

gjD2uj :¼ sup

Z
X

Xn

i;j¼1

uojoiu
ijdxju2C2

cðX;Rn�nÞ; juj6 g

( )
<1;

where g is a nonnegative function.
Using the similar technique done in BV space ([1],

Theorem 1 in Section 5.1, Theorems 1 and 4 in Section
5.2), we can establish the structure theorem, the lower
semi-continuity and the compactness theorem in BV2

space. Moreover, we can also prove the lower semi-conti-
nuity and the compactness theorem in weighted BV2

space with methods similar to what Chen [6] used in
weighted BV space.

Note that our definition of BV2(X) is a little different
from that in [16,17]. BV2(X) is defined as a subspace of
functions u 2 L2(X) in [16,17] while we, on the other
hand, use u 2 L1(X). In this way, we can give a natural
definition of the BV2 norm, that is, kukBV2ðXÞ ¼R

X jD
2uj þ kukL1ðXÞ. By the lower semi-continuity and the

compactness theorem in BV2 space, we can deduce that
BV2(X) is a Banach space with this norm. Similar result
is true in weighted BV2 space.

Also note that �X j D2u j = �Xj$2u j dx when u 2W2,1(X).
In fact, by the divergence theorem,

sup
juj61

Z
X

Xn

i;j¼1

uojoiu
ijdx ¼ sup

juj61

Z
X
�
Xn

i;j¼1

ojuoiu
ijdx

¼ sup
juj61

Z
X

Xn

i;j¼1

oiojuuijdx:

The supremum in the last equality can be attained by

uij ¼ g oioju
jr2uj, where jr2uj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xx þ u2
xy þ u2

yx þ u2
yy

q
, and g is

the cut off function that is 0 near the boundary, 1 in the
subset X 0 � � X and varies smoothly between these two
values. ThenZ

X
jD2uj ¼

Z
X
jr2ujdx:

The remainder of the paper is organized as follows: in Sec-
tion 2, we propose our model for image restoration in the
space BV(X) \ BV2(X) \ L2(X) and prove the existence
and uniqueness of a solution to our minimization problem.
In Section 3, for the convenience of numerical computa-
tion, we derive the associated heat flow for our minimiza-
tion problem in the subspace W1,1(X) \W2,1(X) \ L2(X)
using the steepest descent method. In Section 4, we give
the numerical scheme in detail. Meanwhile, we employ
experimental results and parameter estimates to demon-
strate the effectiveness of our algorithm. Finally, we con-
clude our paper in Section 5.
2. The proposed model and minimization problem

Let u: X � R2 fi R be a gray scale image. Based on
weighted BV space and weighted BV2 space, our model is
proposed as follows:
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min
u2BVðXÞ\BV2ðXÞ\L2ðXÞ

Z
X
ð1� gÞjDuj þ

Z
X

gjD2ujdx

þ k
2

Z
X
ðu� u0Þ2dx; ð2:1Þ

where g(x) is a stopping function chosen as
g ¼ 1

1þcþkjrGr � 0j2; k > 0 is the coefficient of the fidelity term;

c > 0 is a very small positive number added to ensure g < 1
that is needed in theoretical analysis; k > 0 is the contrast
factor; Gr is the Gaussian kernel and r denotes the stan-
dard deviation.

Eq. (2.1) is a natural combination of the ROF model
and the LLT model in the space
u 2 BV(X) \ BV2(X) \ L2(X). By the selection of g, the
ROF minimization plays the main role when jGr * $u0j is
large (large jGr * $u0j correspond to the locations where
edges most likely appear); the LLT minimization plays
the main role when jGr * $u0j is small (small jGr * $u0j cor-
respond to the locations with smooth signals). Thus, our
model has the advantage of preserving edges, inherited
from the ROF model, and the advantage of better restora-
tion (less staircase effects) in smooth regions, inherited
from the LLT model.

Theorem 2.1. Assume u0 2 BV (X) \ BV2(X) \ L1 (X),

then the energy (2.1) has a unique minimizer

u* 2 BV(X) \ BV2(X) \ L1(X).

Proof. For an arbitrary e > 0, consider the following min-
imization problem

min
u2W 1;1þeðXÞ\W 2;1þeðXÞ\L2ðXÞ

Z
X

1� g
1þ e

jruj1þe

�

þ
Z

X

g
1þ e

jr2uj1þedxþ k
2

Z
X
ðu� u0Þ2dx

�
: ð2:2Þ

Clearly, 1
1þcþCku0k2

1
6 g 6 1

1þc from the properties of Gauss-

ian kernel. Then the weighted function g and 1 � g are
both positively bounded from below. Therefore the
functional (2.2) is strictly convex, coercive and weak
lower semi-continuous in a reflexive Banach space
W1,1+e(X) \W2,1+e(X) \ L2(X). Therefore (2.2) has a
unique solution ue 2W1,1+e(X) \W2,1+e(X) \ L2(X) by the
standard argument.

Fix e, t P 0, and let v = min{ue, t}. Then
v 2W1,1+e(X) \W2,1+e (X) \ L2(X) with

rv¼
rue if ue < t

0; if ue P t

�
and jr2vj ¼ jr2uej; if ue < t

0; if ue P t

(

Since ue is a minimizer, we haveZ
X

1�g
1þ e

jruej1þeþ
Z

X

g
1þ e

jr2uej1þedxþk
2

Z
X
ðue�u0Þ2dx

6

Z
X

1�g
1þ e

jrvj1þeþ
Z

X

g
1þ e

jr2vj1þedxþk
2

Z
X
ðv�u0Þ2dx:

ð2:3Þ
By direct calculation, we obtainZ
fuePtg

1� g
1þ e

jruej1þe þ
Z
fuePtg

g
1þ e

jr2uej1þedx

þ k
2

Z
fuePtg

ðue � u0Þ2dx 6
k
2

Z
fuePtg

ðv� u0Þ2dx:

HenceZ
fuePtg

ðue � u0Þ2dx 6
Z
fuePtg

ðt� u0Þ2dx: ð2:4Þ

By setting t ¼ ku0kL1ðXÞ, if ess sup ue > t, thenZ
fuePtg

ðue � u0Þ2dx >
Z
fuePtg

ðt� u0Þ2dx;

which contradicts (2.4). Hence ess sup ue 6 ju0jL1ðXÞ.
Applying a similar argument to v = max{ue, �t} for

t ¼ ku0kL1ðXÞ, we get ess infue P �ju0jL1ðXÞ and hence

kuekL1ðXÞ 6 ku0kL1ðXÞ: Taking v = 0 in (2.9), then {ue} is

bounded in W1,1+e \W2,1+e(X) \ L2(X) � BV(X) \ BV2

(X) \ L2(X). Thus there is a u* 2 BV(X) \ BV2(X) \
L2(X) and a subsequence, also denoted by {ue}, such that
ue fi u* strongly in L1(X), weakly in L2(X) and ue fi u* a.e.
in X as e fi 0. Letting e fi 0 and using (2.2), we get from
(2.3) thatZ

X
ð1� gÞjDu�j þ

1

2

Z
X

gjD2u�jdxþ k
2

Z
X
ðu� � u0Þ2dx

6

Z
X
ð1� gÞjDvj þ 1

2

Z
X

gjD2vjdxþ k
2

Z
X
ðv� u0Þ2dx

for all v 2W1,1+e \W2,1+e(X) \ L2(X). Since for all
v 2 BV(X) \ BV2(X) \ L2(X),v can be approximated by
a sequence vn 2 C1ð�XÞ satisfying

R
Xð1� gÞjDvnj !R

Xð1� gÞjDvj;
R

X gjD2vnj !
R

X gjD2vj; and vn fi v strongly
in L1(X) and L2(X) from the construction of vn [11].
Therefore, the above inequality holds for all
v 2 BV(X) \ BV2(X) \ L2(X). Hence u* is a minimizer
to the energy functional (2.1). By the uniform L1

bound for ue and the convergence of ue to u* a.e. in
X, we have u* 2 L1(X) with ku�kL1ðXÞ 6 ku0kL1ðXÞ. Thus
we have proven the existence of a minimizer
u* 2 L1(X).

Uniqueness follows from the strict convexity of the
energy functional in (2.1). h
3. Flow associated to the energy functional

Numerically, we use the following minimization prob-
lem to approximate (2.1):

min
u2W 1;1ðXÞ\W 2;1ðXÞ\L2ðXÞ

Z
X
ð1� gÞjruj þ

Z
X

gjr2ujdx

þ k
2

Z
X
ðu� u0Þ2dx: ð3:1Þ

Next, we will derive the evolution equation of energy
(3.1).
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For simplicity, we introduce the notation jr2uj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xx þ u2
xy þ u2

yx þ u2
yy

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rux � rux þruy � ruy

p
. Then

the directional (Gateaux) derivative of E at u in the direc-
tion of v is given by

d

de
je¼0Eðuþ evÞ

¼ d

de
je¼0

Z
X
ð1� gÞjruþ ervjdxdy

�

þ
Z

X
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rux þ ervxð Þ � ðrux þ ervxÞ þ ðruy þ ervyÞ � ðruy þ ervyÞ

q
dxdy

þ
Z

X
juþ ev� u0j2dxdy

�

¼
Z

X

ð1� gÞru � rv
jruj dxdyþ

Z
X

gðrux � rvx þruy � rvyÞ
jr2uj

dxdy

þk
Z

X
ðu� u0Þvdxdy: ð3:2Þ

Recall that Green’s formula for the vector field W takes the
formZ

X
W � rvdxdy ¼

Z
oX

W � Nv dS�
Z

X
r � Wvdxdy: ð3:3Þ

Let W ¼ ð1�gÞru
jruj , and let N = (n1,n2) denote the unit outer

normal vector of oX. Using (3.3) on the first term of
(3.2), we get

Z
X

ð1� gÞru � rv
jruj dxdy ¼

Z
oX

ð1� gÞ
jruj ru � NvdS

�
Z

X
r � ð1� gÞru

jruj

� �
vdxdy:

Let W 1 ¼ grux

jr2uj and W 2 ¼ gruy

jr2uj, respectively. Using (3.3) on
the second term of (3.2), we get

Z
X

gðrux � rvx þruy � rvyÞ
jr2uj

dxdy

¼
Z

X

grux

jr2uj
� rvx dxdyþ

Z
X

gruy

jr2uj
� rvy dxdy

¼
Z

oX

grux

jr2uj

� �
� Nvx þ

gruy

jr2uj

� �
� Nvy dS

�
Z

X
r � grux

jr2uj

� �
vx þr �

gruy

jr2uj

� �
vydxdy:

Now let W ¼ r � grux

jr2uj

� �
;r � gruy

jr2uj

� �h i
. Using (3.3), the sec-

ond term of the above equality becomes

Z
X
r � grux

jr2uj

� �
vx þr �

gruy

jr2uj

� �
vydxdy

¼
Z

X
W � rvdxdy ¼

Z
oX

W � Nv dS�
Z

X
r � Wvdxdy

¼
Z

oX
r � grux

jr2uj

� �
n1vþr � gruy

jr2uj

� �
n2vdS

�
Z

X
r � grux

jr2uj

� �� �
x

vþ r � gruy

jr2uj

� �� �
y

vdxdy:
Therefore we obtain

d

de
je¼0Eðuþ evÞ

¼
Z

oX
ru � NvdS�

Z
X
r � ð1� gÞru

jruj

� �
vdS

þ
Z

oX

grux

jr2uj

� �
� Nvx þ

gruy

jr2uj

� �
� Nvy dS

�
Z

oX
r � grux

jr2uj

� �
n1vþr � gruy

jr2uj

� �
n2v dS

þ
Z

X
r � grux

jr2uj

� �� �
x

vþ r � gruy

jr2uj

� �� �
y

vdxdy

þ k
Z

X
ðu� u0Þvdxdy:

With the boundary conditions

ru � N ¼ 0; rux � N ¼ 0; ruy � N ¼ 0;

r � grux

jr2uj

� �
n1 ¼ 0; r � gruy

jr2uj

� �
n2 ¼ 0; ð3:4Þ

the associated Euler–Lagrange equation for the energy
(3.1) is

�r � 1� gð Þru
jruj

� �
þ r � grux

jr2uj

� �� �
x

þ r � gruy

jr2uj

� �� �
y

þ kðu� u0Þ ¼ 0:

Using the steepest descent method, we thus are able to
derive the associated heat flow for our model (3.1),

ou
ot
¼ r � 1� gð Þ ru

jruj

� �
� g

uxx

jr2uj

� �
xx

� g
uxy

jr2uj

� �
yx

� g
uyx

jr2uj

� �
xy

� g
uyy

jr2uj

� �
yy

� kðu� u0Þ on XT

ð3:5Þ

with boundary conditions (3.4) on oXT and ujt=0 = u0 on X,
where X is an open, bounded Lipschitz domain and
XT = X · [0, T], oXT = oX · [0,T].

4. Implementation details and experimental results

To discretize the Eq. (3.5), we use the finite difference
scheme [6,14,22]. Denote the space step by h = 1 and the
time step by s. Thus we have

D�x ðui;jÞ ¼ �½ui�1;j � ui;j�; D�y ðui;jÞ ¼ �½ui;j�1 � ui;j�;

Dxxðui;jÞ ¼ D�x Dþx ðui;jÞ
	 


; D�xyðui;jÞ ¼ � D�y D�x ðui;jÞ
	 
h i

;

D�yxðui;jÞ ¼ � D�x D�y ðui;jÞ
� �h i

; Dyyðui;jÞ ¼ D�y Dþy ðui;jÞ
� �

;

jDðui;jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþx ðui;jÞ
	 
2 þ Dþy ðui;jÞ

� �2

þ d

r
;

jDxðui;jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþx ðui;jÞ
	 
2 þ m Dþy ðui;jÞ;D�y ðui;jÞ

h i� �2

þ d

r
;

jDyðui;jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþy ðui;jÞ
� �2

þ m Dþx ðui;jÞ;D�x ðui;jÞ
� �	 
2 þ d

r
;

jD2ðui;jÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxxðui;jÞ
	 
2 þ Dþxyðui;jÞ

� �2

þ Dþyxðui;jÞ
� �2

þ Dyyðui;jÞ
	 
2 þ d

r
;



Table 1
SNR, L2-norm and smax for the different models

Model SNR L2-norm smax(CFL)

ROF 13.70 2.82 Æ 105 1.25
LLT 14.61 1.85 Æ 105 0.21
Our proposed model 16.08 1.69 Æ 105 0.43
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where m½a; b� ¼ ðsign aþsign b
2
Þ �minðjaj; jbjÞ and d > 0 is near 0.

The details of the numerical algorithm for model (3.1)
are given in the following (the subscripts i,j are omitted):

ukþ1 ¼ uk þ s D�x ð1� gÞ Dþx uk

jDxukj

� �
þ D�y ð1� gÞ

Dþy uk

jDyukj

 !" #

� s Dxx g
Dxxuk

jD2ukj

� �

þ D�yx g

Dþxyu
k

jD2ukj

 !
þ Dþxy g

D�yxu
k

jD2ukj

 !

þ Dyy g
Dyyuk

jD2ukj

� ��
� skðuk � uk

0Þ: ð4:1Þ

The corresponding algorithm for the ROF model and the
LLT model is given by setting g = 0 and g = 1 in (4.1),
respectively.

We present the numerical results below. First, we con-
sider a 2-D denoising problem. The results obtained by
our model are compared with those of the ROF model as
well as the LLT model.

Example 1. The Lena image of size 253 · 253 is used as a test
image. The essential idea of our model is to take the
advantage of the ROF model and the LLT model in order to
recover both jumps and smooth signals accurately. From
Fig. 1, compared with the ROF model and the LLT model,
our proposed model yields better results in image restoration
Fig. 1. 2-D denoising. (a) The original Lena image. The red rectangles indicat
Lena image corrupted with Gaussian noise with SNR = 10.34 db; (c) restoratio
model (iteration = 300, s = 0.05); (e) restoration by our proposed model (it
d = 0.001, c = 0.0001). (For interpretation of the references to colour in this
since it avoids the staircase effect of the ROF model while at
the same time preserving edges as well as the ROF model. In
other words, our model is able to combine the advantage of
both ROF model and LLT model while doing better than
each individually.

The parameters are chosen like this: the larger the noise
is, the lager r is , and the smaller the fidelity coefficient k is.

In order to evaluate the three models, we show the Signal
to Noise Ratio (SNR) of the restored image and the L2-norm
of the difference between the restored and the original image.
For a given true image u and its noisy observation u0, the
noise is denoted as n = u0 � u. With this, the formulas used
to calculate the SNR and the L2-norm become

SNR ¼ 20 � log10

R
Xðu0 � �u0Þ2dxdyR
Xðn� �nÞ2dxdy

 !
;

L2-norm ¼
Z

X
ðu0 � uÞ2dxdy;
e two regions of special interest which will be zoomed-in Figs. 2 and 3; (b)
n by the ROF model (iteration = 60, s = 0.3); (d) restoration by the LLT

eration = 300, s = 0.05). (other parameters: k = 0.005, k = 0.01, r = 0.5,
figure legend, the reader is referred to the web version of this article.)



Fig. 3. A small portion of Lena image is emphasized to show the difference of the three models when processing regions with discontinuities. (a) True
image; (b) noisy image; (c) restoration by the ROF model; (d) restoration by the LLT model; (e) restoration by our proposed model.

Fig. 2. A small part of Lena image is emphasized to compare the performance of the three models when processing with smooth regions. (a) True image;
(b) noisy image; (c) restoration by the ROF model; (d) restoration by the LLT model; (e) restoration by our proposed model.
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where

�u0 ¼
1

jXj

Z
X

u0dxdy; �n ¼ 1

jXj

Z
X

ndxdy:
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Fig. 4. 1-D denoising. (a) Initial clean signal; (b) noisy signal, SNR = 35.30 d
mean 0; (d) recovered from ROF model, SNR = 41.52 db, L2-norm = 12.00
recovered from our proposed model, SNR = 44.02 db, L2-norm = 9.00; (i
d = 0.001, c = 0.0001).
Before processing, the noisy Lena image has SNR =
10.34 db and L2-norm = 3.82 Æ 105. For each scheme, we
found a maximum time step smax where, when s > smax,
the iterative scheme is unstable and the iterative solution
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b, L2-norm = 24.93; (c) Gaussian noise with standard deviation 0.5, and
; (e) recovered from LLT model, SNR = 39.76 db, L2-norm = 14.67; (f)
teration = 100, other parameters: k = 0.5, s = 0.005, k = 0.01, r = 0.5,
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explodes. On the other hand, when s 6 smax, the solutions
converge to a steady state. smax is determined through
numerous experiments on Lena image as in [14].

From Table 1, we observe that our proposed model
has a higher SNR than either the ROF model or the
LLT model, and at the same time, the L2-norm is the
smallest among the three models. Therefore, we conclude
that the proposed model does the best job among the
three models. Moreover, we observe that the maximum
time step of the proposed model is larger than that of the
LLT model.

In order to better understand the behavior of the pro-
posed model in local regions, especially in regions with
smooth signals and regions with discontinuities, we present
the following zoomed-in local results.

A small part of the Lena image is shown in Fig. 2. It is
clear that the ROF model transforms smooth regions into
piecewise constant regions. Our proposed model and the
LLT model both process smooth regions better than the
ROF model. However, the LLT model may cause blurring
in the face while our model is clearer.

Next, we evaluate the performance of the three different
methods in regions with edges. In Fig. 3, our proposed
model, as well as the ROF model, restores and enhances
such signals better than the LLT model.

With our model is established for 2-D images, we can
turn to the 1-D case. Note that the related numerical
scheme should be changed as follows:

D�x ðuiÞ ¼ �½ui�1 � ui�; DxxðuiÞ ¼ D�x Dþx ðuiÞ
	 


;

jDðuiÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþx ðuiÞ
	 
2 þ d

q
; jD2ðuiÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxxðuiÞð Þ2 þ d

q
;

where d > 0 is a parameter. The details of the numerical
algorithm for model (3.1) in 1-D are given by (the subscript
i is omitted):

ukþ1¼ ukþ s D�x 1�gð ÞD
þ
x uk

jDukj

� �
�Dxx g

Dxxuk

jD2uk j

� �
�k uk�uk

0

	 
� �
:

ð4:2Þ
The corresponding algorithms for the ROF model and the
LLT model are obtained by setting g = 0 and g = 1 in (4.2),
respectively.

Now, we apply our algorithm to a signal with size 50
containing ‘ramps’ and ‘parabolas’.

Example 2. Fig. 4 shows the clean signal u and the noisy
signal u0 = u + n, where n is Gaussian noise with standard
deviation, STD = 0.5 and mean = 0. The figure also shows
the restoration results with the ROF model, the LLT model
and our proposed model. Visually, our proposed model has
less staircase effects and makes a good compromise
between edge preserving and smoothing. We also give
estimates of SNR and L2-norm to show that our proposed
model is the best among the three models.

All these experimental results show that our model is
effective in image restoration and works as expected
theoretically.
5. Conclusion

This paper describes a method for filtering gray scale
images corrupted by Gaussian noise. The proposed method
combines a second-order filter (the ROF filter) and a
fourth-order PDE filter (the LLT filter). The model is based
on a convex combination of the two models and the com-
bining function is controlled by the observed image. We
have tested our algorithm on images consisting of edges
and smooth regions. From these experimental results, we
observed that the proposed method is able to preserve
edges as well as the ROF model while at the same time
avoiding the staircase effects in smooth regions. In a word,
the combined model reaps benefits of both the ROF model
and the LLT model, surpassing each individually in image
restoration. Comparing with the iterative method in [22],
our model is more natural. Furthermore, some theoretical
results are presented. In the future, we plan to study the
evolution Eq. (3.5) and the associated heat flow for energy
(2.1) theoretically.
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