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We present a modified Chan–Vese functional and give its theoretical proof. By using the
geometric heat flow method to all the Euler–Lagrange equations, a system of evolution
equations in level set formulation is derived. We study the existence of solution to this
system by Schauder fixed point theorem and the implicit function theorem in Banach
space. This variational formulation can detect interior and exterior boundaries of desired
object(s) in color images.
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1. Introduction

In this paper we propose a model for image segmentation. Our aim is to segment desired object(s) from a color image.
The proposed model incorporates a modified stopping function with the traditional Chan–Vese model [1,2]. This stopping
function is based on the color information of the desired object(s).

The main contributions of this paper are in two aspects: application and theoretical aspects. For the application aspect,
we focus on the segmentation of desired object(s) in color images, and mainly make use of the red, green and blue (RGB)
information of the desired object(s). Using the color information and the derived gradient information, we propose a vari-
ational formulation that can detect the interior and exterior boundaries of the desired object(s). The color information is
used to construct a discrimination function that determines whether a pixel belongs to the desired object(s) or not [3]. The
discrimination function is included in the energy functional and the corresponding evolution equation. With this discrim-
ination function, the evolving curve will stop near the desired objects. We calculate the first variation to the arc length
energy functional, and then, we apply the geometric heat flow method and the level set method to all the Euler–Lagrange
equations [4]. A system of evolution equations is derived. For the theoretical aspect, the existence of the above system of
equations is proved by the viscosity solution theory [5], Schauder fixed point theorem and the implicit function theorem in
Banach space [6,7].

This paper is organized as follows. In Section 2, we describe our variational formulation based on color information and
derive the system of evolution equations. Section 3 discusses the existence of the solution. Our numerical algorithm and
experimental results are given in Section 4. Section 5 concludes the paper.
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2. Modified Chan–Vese model

The geodesic active contour methods are very important in image segmentation [8,9]. However, they can only detect
the exterior boundaries during the shrinkage. The Chan–Vese model is well known to segment all objects in a given image
based on the Mumford–Shah model [10]. Kimmel presented a unified active contours framework based on these works [11].
The energy functional combines the geodesic active contour model, the Chan–Vese model, and a term called the alignment.
The performances of Kimmel’s method have been shown to be better than traditional geodesic active contours and the
Chan–Vese model when directional information about the edge location is provided.

The above methods can detect all the objects from an image. Now, we present a modified Chan–Vese model to only
detect the desired object(s) using the color information. Let �I = (I1, I2, I3) = (R, G, B) be defined on Ω: Ω ⊂ R2. Let �C be
the evolving closed curve in the plane. The modified energy functional is

E(�c+,�c−, �C) = μ

1∫
0

g
(�C(p)

)∣∣�C ′
p

∣∣dp + ν

∫
ω

g
(�C(p)

)
dA + 1

3

∫
ω

β(x)
3∑

i=1

λ+
i

∣∣Ii(x) − c+
i

∣∣2
dx

+ 1

3

∫
Ω\ω̄

β(x)
3∑

i=1

λ−
i

∣∣Ii(x) − c−
i

∣∣2
dx,

where ω is the inside of the curve �C , �c+ = (c+
1 , c+

2 , c+
3 ), �c− = (c−

1 , c−
2 , c−

3 ), c+
i and c−

i (i = 1,2,3) are constants depending
on �C , λ+

i , λ−
i > 0 are parameters for each channel, μ � 0, ν are parameters, g(x) = 1

1+(Gσ ∗γ (x))·Λ2 is the modified stopping

function, where Λ is the largest eigenvalue of the metric tensor in the {x, y, R, G, B} space [12], and γ (x) is a discrimination
function. Here β(x) = Gσ ∗ γ (x).

γ (x) provides a probabilistic criterion for deciding whether a pixel is in the desired object(s) or not. We analyze n sample
pixels chosen from the desired object(s) using the Principal Components Analysis (PCA) and interval estimation [13]. The
PCA is used to transform the original coordinate system into a new coordinate, so that the RGB value I(x) of each pixel of
the color image is projected to the first principal component axis. Then we get a new value Ī(x). The interval estimation is
used to define an interval [a,b] that almost covers all samples for this principal component. Comparing the value with the
interval, the pixel is regarded as a pixel in the desired object(s) in the sense of probability if and only if its value is within
the interval. The discrimination function γ (x) is:

γ (x) =
{

1, a � Ī(x) � b;
0, others.

For the details of the discrimination function, please see [3].
In what follows, for simplicity, the constant 1

3 is combined into the parameters λ+
i and λ−

i .

Minimizing E(�c+,�c−, �C) with respect to the constants c+
i , c−

i (i = 1,2,3) and the curve �C , it yields the associated Euler–
Lagrange equations for c+

i , c−
i (i = 1,2,3) and �C respectively. The level set function u(t, x) is used to get the implicit

representation of the evolving curve �C with the family parameter t [14,15]:

�C = {
x ∈ R2: u(t, x) = 0

}
.

The equation can be solved using a gradient descent method. Meanwhile, we get the evolution equations for the level set
function:

dc+
i (t)

dt
= −c+

i (t)

∫
Ω

β(x)H
(
u(t, x)

)
dx +

∫
Ω

β(x)Ii(x)H
(
u(t, x)

)
dx, in Ω T , (1a)

dc−
i (t)

dt
= −c−

i (t)

∫
Ω

β(x)
(
1 − H

(
u(t, x)

))
dx +

∫
Ω

β(x)Ii(x)
(
1 − H

(
u(t, x)

))
dx, in Ω T , (1b)

c+
i (0) = (c+

i )0, c−
i (0) = (c−

i )0, (1c)

∂u

∂t
= |∇u|

[
μ · div

(
g(x)

∇u

|∇u|
)

+ ν · g(x) + β(x)
3∑

i=1

λ+
i

(
Ii(x) − c+

i (t)
)2 − β(x)

3∑
i=1

λ−
i

(
Ii(x) − c−

i (t)
)2

]
, in Ω T , (1d)

u(0, x) = u0(x), on Ω, (1e)
∂u

∂�n = 0, on (∂Ω)T , (1f)

where �n represents the exterior normal to the boundary ∂Ω , ∂u
∂�n denotes the normal derivative of u at the boundary,

Ω T = [0, T ] × Ω , u0 defines the initial level set, (c+
i )0 and (c−

i )0 are the means of intensity for each channel in the area of
u � 0 and u < 0 respectively, and H(z) denotes the 1D Heaviside function. The detail of the derivation of these equations
can be found in [1,8] and [16].
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3. The existence of the solution

In this section, we will prove the existence of solution to (1a)–(1f) by using the viscosity theory, the Schauder fixed point
theorem and the implicit function theorem in Banach space.

The system of evolution equations is called significative if the following hypotheses are satisfied:

• �I = (I1, I2, I3), Ii � 0 (i = 1,2,3) are Lipschitz functions, i.e., Ii ∈ C(R2) ∩ W 1,∞(R2);

• The initial level set function u0 ∈ C∞(R2);

• 0 � (c±
i )0 � maxx Ii(x) (i = 1,2,3).

Let

h(t, x) = νg(x) + β(x)
3∑

i=1

(
λ+

i

(
Ii(x) − c+

i (t)
)2 − λ−

i

(
Ii(x) − c−

i (t)
)2)

.

In the following, we take μ = 1. The level set evolution equation (1d) is rewritten as

∂u

∂t
= g(x)

2∑
i, j=1

aij(∇u)uxi x j +
2∑

i=1

∂ g(x)

∂xi
uxi + h(t, x)|∇u|, in Ω T ,

where aij(p) = δi j − pi p j

|p|2 when p 
= 0, and p ∈ R2.

Lemma 1. Let A = (aij(p))2×2 , p = (p1, p2), ai j(p) = δi j − pi p j

|p|2 , then A is a symmetric semi-positive definite matrix.

Having fixed the function u, we can find the solution c±
i (t) of the ordinary differential equation (ODE) system (1a)–(1c).

We have:

Lemma 2. For all t ∈ [0, T ], ∀T < ∞, c+
i (t), c−

i (t) (i = 1,2,3) are bounded functions, i.e., 0 � c±
i (t) � maxx Ii(x).

Proof. Eqs. (1a)–(1b) are ODEs. So, they can be solved and the solution c±
i (t) � 0. We only prove the property of c+

i (t). The
proof of the c−

i (t) is the same.
If the maximum of c+

i (t) is reached at t = 0, then c+
i (t) � c+

i (0). By using the hypotheses (c), we have 0 � c+
i (t) �

maxx Ii(x).

If the maximum of c+
i (t) is reached at some t0 ∈ (0, T ), then

dc+
i

dt (t0) = 0. By (1a), we have

c+
i (t0) =

∫
Ω

β(x)Ii(x)H(u(t0, x))dx∫
Ω

β(x)H(u(t0, x))dx
.

So, c+
i (t0) is the mean of intensity on the corresponding area. Therefore, 0 � c+

i (t0) � maxx Ii(x), and 0 � c+
i (t) � maxx Ii(x).

If the maximum of c+
i (t) is reached at t = T , then there exists a δ > 0 so that Eq. (1a) is still true for all t ∈ [0, T + δ]

since T is arbitrary, and then the maximum of c+
i (t) is reached at some interior point. By the above discussion, 0 � c+

i (t) �
maxx Ii(x).

If c+
i (t) strictly increases with t , then

dc+
i

dt (t) � 0. Thus,

c+
i (t) �

∫
Ω

β(x)Ii(x)H(u(t, x))dx∫
Ω

β(x)H(u(t, x))dx
.

The right-hand side of above equation is the mean of intensity on the corresponding area. Therefore, 0 � c+
i (t) � maxx Ii(x).

In summary, for all t ∈ [0, T ],∀T < ∞, we have 0 � c+
i (t) � maxx Ii(x). �

On the other hand, for fixed c±
i (t), (1d)–(1f) is a partial differential equation system for u. Then, we can prove the

existence, uniqueness and stability of viscosity solution to the system (1a)–(1f) by the following theorems.

Theorem 3. Let g(x) be a smooth function, Ii ∈ C(R2) ∩ W 1,∞(R2), I i(x) and u0(x) are Lipschitz continuous. The problem (1d)–(1f)
has a viscosity solution u ∈ C([0, T ] × R2) ∩ L∞(0, T ; W 1,∞(R2)) for any T < ∞, and

inf
R2

u0(x) � u(t, x) � sup
R2

u0(x).
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Theorem 4. Let g(x) be a smooth function, Ii ∈ C(R2)∩ W 1,∞(R2) is Lipschitz continuous, and assume that u0 is Lipschitz continuous,
then the viscosity solution u derived from Theorem 3 is unique. Moreover, if v is a viscosity solution of (1d) with an initial value v0 ,
then

sup
0�t�T

∥∥u(t, ·) − v(t, ·)∥∥L∞(R2)
� ‖u0 − v0‖L∞(R2)

for all T ∈ [0,∞).

We omit the proof of Theorems 3 and 4 (see [17] and [18]). So from c±
i (t) there exists a solution u via (1d)–(1f). From

this u we can find a new solution c±
i (t) via (1a)–(1c). Then, using this alternative iterative method, a solution (u, c±

i ) of
coupling Eqs. (1a)–(1f) could be obtained, provided we can prove the existence of fixed point for the mapping from old
c±

i (t) to new c±
i (t).

For any fixed T < ∞, let X be a Banach space defined as follows. It is a product space composed by six continuous
function spaces defined on [0, T ], ∀T < ∞.

X = {
f (t) = (

f1(t), . . . , f6(t)
) ∈ X

∣∣ t ∈ [0, T ], f i(0) = 0, i = 1, . . . ,6
}

with norm∥∥ f (x)
∥∥ = max

t∈[0,T ], i=1,...,6

∣∣ f i(t)
∣∣.

Let d±
i (t) = c±

i (t) − (c±
i )0, then d±

i (0) = 0. We have −(c±
i )0 � d±

i (t) � maxx Ii(x) − (c±
i )0 since 0 � c±

i (t) � maxx Ii(x).
We choose a proper closed convex subset Y in X ,

Y = {
d(t) = (

d+
i (t),d−

i (t)
) ∈ X

∣∣ t ∈ [0, T ], −(
c±

i

)
0 � d±

i (t) � max
x

Ii(x) − (
c±

i

)
0, i = 1,2,3

}
.

Accordingly, its norm is

∥∥d(t)
∥∥ = max

{
max

t,i

∣∣d+
i (t)

∣∣,max
t,i

∣∣d−
i (t)

∣∣}.

Let c0 = ((c+
i )0, (c−

i )0). For a set of c(t) = d(t) + c0, the system (1d)–(1f) has a solution u(t, x) by Theorem 3. Solving

(1a)–(1c), we get a new set of c̃(t) = d̃(t) + c0. From Lemma 2, d(t), d̃(t) ∈ Y . We define a mapping

T : Y −→ Y ,

d(t) �−→ d̃(t).

In order to prove the existence of fixed point for the map T using Schauder fixed point theorem, we must verify that the
assumptions for the Schauder fixed point theorem. The following two lemmas guarantee the assumptions.

Lemma 5. If T : Y → Y , then T Y ⊂ Y , and T Y is precompact.

Proof. By the definition of the mapping T and Lemma 2, it is clear that T Y ⊂ Y .
For any sequence {dm(t) = ((d+

i )m(t), (d−
i )m(t))} in T Y , (d±

i )m(t) is bounded by Lemma 2 and the facts that 0 � β(x) � 1,

0 � H(z) � 1 and 0 � Ii(x) � 255. Therefore, | d(d±
i )m(t)
dt | is bounded. Moreover, there exists a positive constant M , which

depends only on maxx Ii(x) and the volume of Ω , such that |d′
m(t)| � M. For any t, s ∈ [0, T ], we have∣∣dm(t) − dm(s)

∣∣ � M|t − s|.
There is a subsequence {dmk (t)} of {dm(t)} by the Arzelà–Ascoli theorem, such that {dmk (t)} converges to some d(t) in Y as
k → ∞. Thus, T Y is precompact. �
Lemma 6. T is a continuous mapping.

Proof. We hope that u will have a small increment if c(t) = d(t) + c0 has a small increment, since u is an intermediate
variable by the definition of T . The solution of ODEs (1a) and (1b), c̃(t) = d̃(t) + c0 will have a corresponding small in-
crement, since the solution of ODE continuously depends on the coefficients. So, we are able to prove the continuity of
the mapping T . Therefore, the key to this problem is to prove that u(t, x) continuously depends on d(t) in the regularized
equations of (1d)–(1f).
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Let uε(t, x) = v(t, x) + uε
0(x), bε(∇(v + uε

0)) =
√

|∇(v + uε
0)|2 + ε . Eqs. (1d)–(1f) are rewritten as the equations about

v(t, x):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(v + uε
0)

∂t
− g(x)

2∑
i, j=1

aε
i j

(∇v + ∇uε
0

)(
v + uε

0

)
xi x j

−
2∑

i=1

∂ g(x)

∂xi

(
v + uε

0

)
xi

− bε
(∇(

v + uε
0

))

×
[
νg(x) + β(x)

3∑
i=1

λ+
i

(
Ii(x) − (

d+
i (t) + (

c+
i

)
0

))2 − β(x)
3∑

i=1

λ−
i

(
Ii(x) − (

d−
i (t) + (c−

i )0
))2

]
= 0 in Ω T ,

v(0, x) = 0 on Ω,

∂(v + uε
0)

∂�n = 0 on (∂Ω)T .

We will use the implicit function theorem in Banach space to prove that v(t, x) continuously depends on d(t).
Let

D(t) = (
D+

1 (t), D+
2 (t), D+

3 (t), D−
1 (t), D−

2 (t), D−
3 (t)

)
,

where t ∈ [0, T ] and D(0) = 0. Let E1 be a space composed by all these functions. E2 is composed by all continuous
functions V (t, x) with initial value 0. F is a continuous functional space defined on Ω T . So, E1, E2 and F are Banach spaces.
Define

f : E1 × E2 −→ F ,(
D(t), V (t, x)

) �−→ f
(

D(t), V (t, x)
)

where

f
(

D(t), V (t, x)
) = ∂(V + uε

0)

∂t
− g(x)

2∑
i, j=1

aε
i j

(∇V + ∇uε
0

)(
V + uε

0

)
xi x j

−
2∑

i=1

∂ g(x)

∂xi

(
V + uε

0

)
xi

− bε
(∇(

V + uε
0

))

×
[
νg(x) + β(x)

3∑
i=1

λ+
i

(
Ii(x) − (

D+
i (t) + (

c+
i

)
0

))2 − β(x)
3∑

i=1

λ−
i

(
Ii(x) − (

D−
i (t) + (c−

i )0
))2

]
.

It is clear that f (d(t), v(t, x)) = 0 when (D(t), V (t, x)) = (d(t), v(t, x)).
The partial differentiation (D2 f ) : E2 → F at (d(t), v(t, x)) is just a linearization of f (D(t), V (t, x)) about V (t, x) at the

point (d(t), v(t, x)). Thus, we calculate d
ds f (d(t), v(t, x) + sw(t, x))

∣∣∣
s=0

. By complicated computation, we have

d

ds
f
(
d(t), v(t, x) + sw(t, x)

)∣∣∣∣
s=0

= ∂ w

∂t
−

2∑
i, j=1

Aij(t, x)wxi x j +
2∑

i=1

Bi(t, x)wxi ,

where Aij(t, x), Bi(t, x) are represented by the known functions v(t, x), c±
i (t) and g(x). Aij(t, x) is a positive matrix, and all

its eigenvalues are not smaller than some constant ε > 0. Therefore, (D2 f ) : E2 → F is a linear mapping

L : E2 −→ F ,

w �−→ L w,

where

L w = ∂ w

∂t
−

2∑
i, j=1

Aij(t, x)wxi x j +
2∑

i=1

Bi(t, x)wxi .

In order to prove the continuity of the mapping T , we must verify that L is an isomorphic mapping, i.e., for any f ∈ F ,
there exists a w ∈ E2 such that L w = f .

Since w ∈ E2 satisfies w(0, x) = 0, w is the solution of the second order parabolic equations⎧⎪⎪⎨
⎪⎪⎩

L w = f on Ω T ,

w|t=0 = 0 on Ω,

∂ w

∂�n = 0 on (∂Ω)T .

By the classical theory of second order parabolic equations, there exists a solution w(t, x) that satisfies w(0, x) = 0 with
Neumann boundary condition, and maxΩT |w(t, x)| � C · maxΩT | f (t, x)|, where the constant C depends only on the known
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coefficients of the parabolic operator L. Therefore, w(t, x) = 0 as f (t, x) = 0. So, the mapping L : E2 → F is an isomorphic.
As a result, T : Y → Y is a continuous mapping. �

Then, we obtain our main theorem:

Main Theorem. The solution of the system of Eqs. (1a)–(1f) exists.

Proof. By Lemmas 5 and 6, there exists a fixed point d(t) ∈ Y , such that T (d(t)) = d(t), i.e., c̃(t) = c(t). Therefore, the
solution of the system of evolution Eqs. (1a)–(1f) exists by Theorems 3 and 4. �
4. Implementation details and experimental results

We use a finite difference scheme to discretized Eqs. (1a)–(1f) [14,15]. For simplicity, we write (x, y) for the spatial
variables (x1, x2) ∈ Ω ⊂ R2. We denote the space step by h = 1 and the time step by τ . Then (xi, y j) = (ih, jh), 1 � i, j � M ,
and tn = nτ , where M is the image size. Thus, we denote uij = u(tn, ih, jh). We mainly present the scheme of the equation
of level set (1d):

∂u

∂t
= μ · g(x)|∇u|div

( ∇u

|∇u|
)

+ μ∇g(x) · ∇u

+ |∇u|
[
νg(x) + β(x)

3∑
i=1

λ+
i

(
Ii(x) − c+

i

)2 − β(x)
3∑

i=1

λ−
i

(
Ii(x) − c−

i

)2

]
,

(∇g(x) · ∇u
)n

i j = max
(

Dx gij,0
)

D−xun
i j + min

(
Dx gij,0

)
D+xun

i j

+ max
(

D y gij,0
)

D−yun
i j + min

(
D y gij,0

)
D+yun

i j,

where

D−xun
i j = ui, j − ui−1, j, D+xun

i j = ui+1, j − ui, j, Dxun
ij = ui+1, j − ui−1, j

2
,

D−yun
i j = ui, j − ui, j−1, D+yun

i j = ui, j+1 − ui, j, D yun
ij = ui, j+1 − ui, j−1

2
.

The upwind scheme is used to |∇u| [14]:

|∇u|ni j ≈
⎧⎨
⎩

|∇−u|ni j = (max(D−xun
i j,0)2 + min(D+xun

i j,0)2 + max(D−yun
i j,0)2 + min(D+yun

i j,0)2)
1
2 , ν � 0,

|∇+u|ni j = (min(D−xun
i j,0)2 + max(D+xun

i j,0)2 + min(D−yun
i j,0)2 + max(D+yun

i j,0)2)
1
2 , ν > 0.

We denote

F (x, y) � νg(x, y) + β(x, y)

3

3∑
i=1

λ+
i

(
Ii(x, y) − c+

i

)2 − β(x, y)

3

3∑
i=1

λ−
i

(
Ii(x, y) − c−

i

)2
.

The finite difference scheme of the level set equation is

un+1
i j = un

ij + τ
[
μgijk

n
i j

((
Dxun

ij

)2 + (
D yun

ij

)2) 1
2

+ μ
(∇g(x) · ∇u

)n
i j + max

(
F n

i j,0
)|∇+u|ni j + min

(
F n

i j,0
)|∇−u|ni j

]
,

where kn
i j is the central finite difference approximation of the curvature:

k = div

( ∇u

|∇u|
)

= uxxu2
y − 2uxu yuxy + u yyu2

x

(u2
x + u2

y)
3
2

.

The experimental results are shown in Figs. 1 and 2. Our model only detects the desired object(s), while the traditional
Chan–Vese methods will detect all the objects in a given image. In all the experiments in this paper, the τ is set as 5,
σ = 0.5. and λ± = (1,1,1).

Fig. 1 shows an example where our model detects only the clouds. We choose six sample pixels in the cloud area, and
the parameters are μ = 1 and ν = −100.

Fig. 2 gives an example to show that we can segment different desired object(s) by choosing sample pixels from different
areas. In the first result the desired object was the rubber ring. In this experiment, five sample pixels were chosen in the
rubber ring, and the parameters used were μ = 0.1 and ν = −10. In the second result the desired object was the hand. We
chose seven pixels in the hand area. The parameters used were μ = 1 and ν = 0.
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Fig. 1. Result for the detection of clouds. (a) The initial image; (b) The result.

Fig. 2. (a) The initial image; (b) The result of detecting the rubber ring; (c) The result of detecting the hand.
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5. Conclusion

We have proposed a modified Chan–Vese model to detect the interior and exterior boundaries of the desired object(s)
in color images. Two real color images are used to examine our method, and the results are found satisfactory as only
the desired object(s) are accurately delineated. Moreover, the existence of the solution to the evolution equations has been
proved.
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