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In this paper we propose a two-stage algorithm for oil slick segmentation in synthetic
aperture radar (SAR) images. In the first stage, we propose a new variational model
to reduce speckles in non-textured SAR images. Applications to simulated and real
SAR images show that the method is well balanced in the quality of the conventional
criteria. Then, in the second stage, we use the fast Chan–Vese (CV) model and the
level set method to segment the oil slick in the de-speckled SAR image. The additive
operator splitting (AOS) scheme is used in the numerical implementation to improve
computational efficiency. Experimental results show that our two-stage algorithm is
effective for oil slick segmentation in SAR images.

1. Introduction

Synthetic Aperture Radar (SAR) images have been widely used for environmental
monitoring, including oil slick detection. However, the imagery produced by SAR
systems suffers from the effects of speckle noise. In SAR images, an oil slick appears as
a dark slick or spot, whereas the surrounding water appears bright. The SAR images
with oil slicks are usually non-textured and have a high noise and low contrast,
disturbing their extraction and analysis.

To reduce speckles, several geometric filters, such as the Enhanced Lee, the Enhanced
Frost and the Gamma filters (Lopes et al. 1993), are utilized. Furthermore, some
variational de-speckling models are also introduced such as the Rudin–Lions–Osher
(RLO) model (Rudin et al. 1994, 2003).

This paper focuses on the segmentation of an oil slick in SAR images using a two-
stage method. In the first stage, we propose a variational model to reduce speckles
in non-textured SAR images based on the RLO model. In the second stage, the
de-speckled oil slick image is segmented. For segmentation, we make use of the implicit
active contour model which has been widely used in image segmentation and object
tracking. The implicit active contour model involves the level set method. The idea is to
view the active contour as a zero level set of an evolving surface driven by partial
differential equations (PDEs) (Sethian 1996). As the surface evolves, the active contour
changes. Then the final contour is extracted when the evolution stops. The main
advantages of the implicit active contour model are the automatic handling of topology
changes, high numerical stability and independence of parametrization. However, the
main drawback is the additional computational complexity. In order to overcome this
drawback, special techniques, such as the narrow band and additive operator splitting
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(AOS) scheme, are introduced. The Chan–Vese (CV) model (Chan and Vese 2001) is
one of the basic implicit active contour models. PDEs and the level set method have been
introduced in oil slick segmentation by Huang et al. (2005). In this paper, we use the fast
CV model which is a modification of the original CV model to segment the oil slicks.

The present paper is organized as follows: in section 2, we propose the de-speckling
model for SAR images. The algorithm is compared with classical de-speckling filters
and the RLO model using both simulated and real SAR images. In section 3, we
explain the fast CV model and its level set evolution equation. In section 4, we
explain the numerical implementation with the AOS scheme. Then we test the two-
stage method on two real SAR images for oil slick segmentation in section 5.
Finally, we conclude our paper in section 6.

2. SAR image de-speckling model

2.1 The proposed model

Speckle noise in SAR images is modelled as a multiplicative noise process. Assume
that the true radiometric value of the image is represented by u, the intensity value
measured by the SAR system is u0, and the speckle noise is n. Then the speckle noise
model is given by:

u0 ¼ un: (1)

For one-look SAR images, n is negative exponentially distributed with mean one. For
multi-look SAR images, n follows the Gamma distribution with mean one. For the
details of SAR’s multiplicative noise model, see Oliver and Quegan (1998).

Based on equation (1) and the well-known Rudin-Osher-Fatemi (ROF) model
(Rudin et al. 1992), the RLO model (Rudin et al. 1994, 2003) considers the following
constrained minimization problem:

min EðuÞ ¼
R

! j!ujdx
! "

subject to
R

!

u0

u
$ 1

# $
dx ¼ 0;

R
!

u0

u
$ 1

# $2
dx ¼ s2: (2)

The RLO model used the assumption that the noise has mean 1 and standard
deviation s. It is solved by the Lagrange multiplier method, and the two Lagrange
multipliers are updated in the evolution process.

Chan and Esedoglu (2005) claimed that for the removal of Gaussian noise, using
the L1 norm fidelity term has the advantages of having more geometric information
and maintaining good contrast. That encourages us to use an L1 norm fidelity term in
the de-speckling case. Then we propose the following energy minimization model:

min
u2BVð!Þ

EðuÞ ¼
Z

!
j!ujdxþ l
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u0

u
$ 1

%%%
%%%dx

& '
; (3)

where BV denotes the bounded variation space. Unlike the RLO model, equation (3) is
an unconstrained problem with only one fidelity term. l is a user defined parameter. In
this paper, we focus on the de-speckling of almost piecewise constant images. Although
the RLO model has a similar performance to the proposed model, the proposed model is
simpler than the RLO model both in the formulation and implementation. Moreover,
our model is more stable than the RLO model in the de-speckling process. Hence the
proposed model is more suitable for our oil slick segmentation problem.
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Experiments show that in the proposed model l should be chosen in the range [1, 100].
However, in the RLO model, when the noise level is high, the two Lagrange multipliers
vary dramatically, causing instability of the algorithm. By the standard argument in the
variational method, we get the associated Euler–Lagrange equation of (3):

$div
!u

!uj j

( )
$ l

u0ðu$ u0Þ
u2 u$ u0j j

¼ 0; in !

@u

@N
¼ 0; on @!

8
>><

>>:
(4)

where N is the unit outward normal of @!. Using the steepest descent method, we get
the associated heat flow

ut ¼ div
!u

!uj j

( )
þ l

u0ðu$ u0Þ
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(5)

2.2 Evaluation of results

We compare our algorithm with the Enhanced Lee filter, the Enhanced Frost filter,
the Gamma filter and the RLO model in what follows using a simulated and a real
SAR image. We select the parameters for each method by trial-and-error in order to
achieve optimal results.

For the simulated SAR image, since the true image (piecewise smooth, non-textured)
is known, the indices such as the Mean Absolute Error (MAE), the Mean Square Error
(MSE) and the Signal-to-Noise-Ratio (SNR) are used as criteria to evaluate the de-
speckling algorithm (Schulze and Wu 1995). However, for the real SAR image, the
conventional evaluation criteria include edge preservation, mean preservation, reduc-
tion of standard deviation and visual appearance (Han et al. 2002).

Table 1 shows that the proposed method has the lowest MSE and the highest SNR
among all algorithms except that the MAE is a little higher than the RLO model. By
these indices, we conclude that our proposed model and the RLO model are superior
to other filters. In figure 1, we display the results of the five algorithms. The filters
are applied with window size 5 & 5. In visual appearance, the de-speckled images by
the RLO model (figure 1(f)) and our method (figure 1(g)) are closest to the true image
(figure 1(a)) while the other filters blur the edges (figures 1(c)–(e)).

For the European Remote-Sensing Satellite (ERS)-2 Precision Image (PRI), the
RLO model is not stable since the noise level is high, and then the two Lagrange
multipliers vary significantly and their values are either very big or very small. For this
image, the filters are applied with window size 7& 7. Figure 2 shows that the proposed
model is powerful in terms of edge preservation and speckle removal. From table 2, we
find that the proposed model, the Enhanced Lee filter and the Gamma filter, except
the Enhanced Frost filter, can well preserve the global mean. The Edge Preservation
Index (EPI) (Huang et al. 2005) is used to compare the results. The larger the value of
EPI, the greater degree of edge preservation. Table 2 shows that the proposed model
has a higher EPI than the Enhanced Lee filter and the Gamma filter. When the
iteration is 15, the EPI of the proposed model is the highest. In visual appearance,
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our proposed model can better preserve the edges while the results of the filters are
somewhat blurring.

Two sub-areas labelled as I and II (20 by 20 pixels each) taken from the ERS-2
PRI and the smoothed images in figure 2 are chosen for evaluating the reduction
of standard deviation (SD) and mean (Mean) preservation. Table 2 shows that the
proposed model can preserve the mean in area I as good as other filters. Meanwhile, it
can better preserve the mean in area II. The standard deviation of the proposed model is
lower than the filters except in area I when the iteration is 15. As far as the proposed
model is considered, as the iterations increase, the mean index increases slowly, but the
standard deviation decreases rapidly. On the whole, from the above analysis, the
proposed model can effectively preserve the image mean and edges, as well as reduce
the standard deviation. So it is a powerful de-speckling algorithm.

Table 1. Comparison of de-speckling ability on a simulated SAR image.

Algorithm MAE MSE SNR(dB)

None (Simulated SAR image) 20.04 568.68 6.20
Enhanced Lee filter
3 & 3 23.85 923.72 4.09
5 & 5 25.38 1.09 & 103 3.37
7 & 7 27.36 1.29 & 103 2.63
Enhanced Frost filter
3 & 3 30.78 1.90 & 103 0.96
5 & 5 41.57 3.29 & 103 -1.43
7 & 7 45.84 4.01 & 103 -2.28
Gamma filter
3 & 3 30.26 1.51 & 103 1.95
5 & 5 29.33 1.48 & 103 2.04
7 & 7 29.02 1.47 & 103 2.08
RLO model 4.55 89.80 14.21
Proposed model 4.66 89.73 14.22

(a) (b)

(c) (d) (e) (f ) (g )

Figure 1. Comparison of different de-speckling algorithms using a simulated SAR image. (a)
The true noise-free image with size 196 by 124; (b) the simulated SAR image (by the Matlab
program); (c) result of the Enhanced Lee filter; (d) result of the Enhanced Frost filter; (e) result
of the Gamma filter; (f) result of the RLO model with iteration 20; (g) result of the proposed
model with iteration 20.
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In figures 1 and 2, for the proposed model, the equation 5 is implemented with the
AOS scheme (see section 4) with l ¼ 10 and time step ! ¼ 1.

3. Fast CV model

Let u0 : ! ' R 2 ! R be a given gray scale image, and CðsÞ : ½0;1)! R 2 be a para-
metrized curve. Chan and Vese (2001) proposed the following minimization method
for two-phase segmentation:

minfEðC;c1;c2Þ ¼ m
R LðCÞ

0 dsþ "
R

insideðCÞ dA

þ l1

R
insideðCÞ u0 $ c1j j2dxþ l2

R
outsideðCÞ u0 $ c2j j2dxg

(6)

Table 2. Comparison of de-speckling ability on a real SAR image.

Algorithm Mean EPI Area I Mean Area I SD Area II Mean Area II SD

None (SAR image) 2.64 & 104 1.17 & 104 4.44 & 103 3.22 & 104 6.26 & 103

Enhanced Lee filter 2.64 & 104 0.24 1.16 & 104 2.12 & 103 3.37 & 104 3.71 & 103

Enhanced Frost filter 2.49 & 104 0.30 1.16 & 104 2.12 & 103 3.37 & 104 3.71 & 103

Gamma filter 2.64 & 104 0.24 1.16 & 104 2.12 & 103 3.37 & 104 3.71 & 104

Proposed (iter ¼ 15) 2.64 & 104 0.36 1.16 & 104 2.23 & 103 3.28 & 104 3.52 & 103

Proposed (iter ¼ 20) 2.64 & 104 0.29 1.16 & 104 1.81 & 103 3.31 & 104 3.33 & 103

(a) (b) (c)

(d) (e) (f )

Figure 2. ERS-2 PRI image (Photo: ESA, Acquired: 09-APR-2000 Center: S20:37:46/
E149:11:23) over the Proserpine area in Queensland, Australia is used to demonstrate the de-
speckle algorithms. (a) ERS-2 PRI with size 200 by 200; (b) result of the Enhanced Lee filter; (c)
result of the Enhanced Frost filter; (d) result of Gamma filter; (e) result of the proposed model with
iteration 15; (f) result of the proposed model with iteration 20.
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where L(C) is the arc length of the curve C, and m * 0, " * 0, l1, l2 * 0 are fixed
parameters. The first term is a length term that makes the active contour have some
regularity and not fractal. The second term is called the balloon force term used to
adjust the moving speed of the curve in the normal direction. The last two terms can be
seen as the fidelity terms.

In the level set method (Sethian et al. 1996), C ' ! is represented by the zero level
set of a Lipschitz function f : !! R , such that

C ¼ x 2 ! : fðxÞ ¼ 0f g;
insideðCÞ ¼ x 2 ! : fðxÞ > 0f g;
outsideðCÞ ¼ x 2 ! : fðxÞ < 0f g:

8
<

: (7)

In the level set formulation, the CV model is expressed as

minfEðf;c1;c2Þ ¼ m
R

! #ðfÞ !fj jdxþ "
R

! HðfÞdx

þ l1

R
! u0 $ c1j j2HðfÞdxþ l2

R
! u0 $ c2j j2 1$HðfÞð Þdxg: (8)

Here f is the level set function, H(f) is the Heaviside function: HðfÞ ¼ 1if f * 0
and HðfÞ ¼ 0 otherwise, and #(f) is the Dirac function. The minimization of
equation (8) is achieved by introducing an artificial time variable, and moving in
the steepest direction to steady state

ft ¼ #"ðfÞ mdiv !f
!fj j

# $
$ " $ l1ðu0 $ c1Þ2 þ l2ðu0 $ c2Þ2

h i
; in !& Rþ

fð0;xÞ ¼ f0ðxÞ; in !

#"ðfÞ
!fj j

@f
@n
¼ 0; on @!

8
>>>><

>>>>:

(9)

where #"(f) is an approximation of #(f) and c1, c2 are updated by the formula

c1 ¼
R

! u0HðfÞdxR
! HðfÞdx

; c2 ¼
R

! u0 1$HðfÞð ÞdxR
! 1$HðfÞð Þdx

: (10)

The advantage of the CV model is that it can detect the interior boundary and
the boundaries are not necessarily defined by gradient. It is perfect in the segmen-
tation of piecewise constant or piecewise smooth images. However, the CV model
is not very efficient when dealing with image of large size or high noise. The oil
slicks in our de-speckled SAR images are piecewise smooth dark regions without
explicit edges, hence the CV model is quite suitable to segment such images.
Moreover, inspired by Zhao et al. (1996), we replace the factor #"(f) in (8) by
!fj j in order to improve the convergence speed. Then we obtain the so-called fast

CV model:

ft ¼ !fj j mdiv !f
!fj j

# $
$ " $ l1ðu0 $ c1Þ2 þ l2ðu0 $ c2Þ2

h i
; in !& Rþ

fð0;xÞ ¼ f0ðxÞ; in !

#"ðfÞ
!fj j

@f
@n
¼ 0; on @!

8
>>>><

>>>>:

(11)

where c1 and c2 are updated by the formula (6). This algorithm is stable and very
efficient in segmenting the noise-free image or low noise image with piecewise smooth
features.
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4. Numerical implementation and the AOS scheme

Here we use the AOS scheme (Weickert et al. 1998) to implement equations (5) and (11).
First we rewrite the evolution equations (5) and (11) in a uniform formula as

vt ¼ aðvÞdivðg!vÞ þ $ðvÞ

¼ aðvÞ @
@x1

gðxÞ @
@x1

v

( )
þ aðvÞ @

@x2
gðxÞ @

@x2
v

( )
þ $ðvÞ: (12)

Denoting

A1 ¼
@

@x1
gðxÞ @

@x1

( )
; A2 ¼

@

@x2
gðxÞ @

@x2

( )
; (13)

we can write the evolution equation as

vt ¼ aðvÞðA1 þ A2Þvþ $ðvÞ: (14)

We employ discrete times tn ¼ n! , where n P N and ! denotes the time step size.
Additionally, an image is divided into grid nodes (i, j) by a uniform mesh of spacing h.
Using standard notation, vn

ij denotes the approximation of vðih, jh, tnÞ. As Weickert et al.
(1998), we use a simple discretization for the Al , l 2 f1,2g operators. For example, we
can write A1 as follows: Rearrange the image matrix row by row as one column and let

@

@x1
gðxÞ @

@x1
v

( )
+
X

j2NðiÞ

gj þ gi

2h2
vj $ vi

* +
; (15)

where N(i) is the set fi $ 1;i þ 1g, representing the two horizontal neighbours of pixel
i. The elements of A1 are thereby given by

aij ¼

gi þ gj

2h2
; j 2 NðiÞ

$
X

k2NðiÞ

gi þ gk

2h2
; j ¼ i

0 else:

8
>>>>><

>>>>>:

(16)

Then the AOS scheme gives the iteration

vnþ1 ¼ 1

2

X

l2f1;2g
ðI $ 2!aðvnÞAlðvnÞÞ$1 vn þ $ðvnÞð Þ (17)

where I denotes the unit matrix. Since the time step ! should be chosen as large as in
the interval [1, 10], the AOS scheme is very efficient.

Note that the boundary conditions of (5) and (11) are satisfied by extending the
boundary value of the initial data u0 and the initial level set f0 symmetrically.

5. Application to oil slick segmentation

The following Environmental Satellite (ENVISAT) Advanced Synthetic Aperture
Radar (ASAR) image shows the oil slick released by a crippled tanker in the north-
west coast of Spain in 2002. The tanker itself is visible as a white dot at the bottom-left
of the oil slick.

In figure 3, the speckle noise in the ENVISAT ASAR image is perfectly suppressed.
In the de-speckled image, the oil slick has piecewise smooth dark features. Therefore,
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the fast CV model can successfully segment the oil slick; especially the interior
boundary is delineated out. Threshold segmentation based on the de-speckled
image shows good results too. The threshold is set to be the median value of the de-
speckled image. However, with a close look, there are some isolated points around the
boundaries, which is not so satisfactory.

In figure 4, the ERS-2 SAR image suffers from speckle noise. It is de-speckled into a
piecewise smooth image such that the oil slick is easy to be delineated out by the fast
CV algorithm. In the threshold segmentation result, there is a hole in the bottom of
the left oil part which is really oil. The result of the fast CV algorithm is more exact.

For the above two images, the computation time for each stage is several seconds
since fewer than 20 iterations are needed. Both segmentation results are satisfactory in
terms of visual appearance. Compared with other segmentation methods such as
intensity threshold, our two-stage method is highly automatic and the extracted oil
slick boundaries are smooth.

6. Conclusion

Speckles in SAR images disturb the analysis of SAR images. In this paper, we have
proposed a two-stage algorithm for oil slick segmentation in SAR images. Firstly, we
de-speckled the SAR image with a new variational model. This de-speckling

(a) (b)

(c) (d)

Figure 3. An ENVISAT ASAR image (Photo: ESA, Orbit: 3741; Track: 180) of the Spanish
coast is used to demonstrate the proposed two-stage oil slick segmentation algorithms. (a)
ENVISAT ASAR image with size 600 by 476; (b) the de-speckling result by the proposed model
(parameters: ! ¼ 5, l ¼ 10, iteration ¼ 20); (c) the oil slick segmentation result by the fast CV
model (parameters: ! ¼ 5, m ¼ 1, l1 ¼ 3, l2 ¼ 1, " ¼ 0, iteration ¼ 20); (d) threshold segmen-
tation result based on the de-speckled image.
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algorithm is powerful, judged by the conventional criteria, especially for the case that
the regions of interest are piecewise smooth (non-textured) such as a SAR image with
oil slick features. In other cases, where texture or strong targets are dominating, this
method processes less well, since there is a trade-off between speckle reduction and
small-scale feature preservation. By the de-speckling algorithm, the SAR images with
oil spills are processed into piecewise smooth images. Then in the second stage, a fast
CV model is utilized to delineate out the oil slicks. The algorithm only costs several
seconds in each stage, so it is of high efficiency.
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