
Applied Mathematics and Computation 216 (2010) 870–882
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
Variable exponent functionals in image restoration

Fang Li a,*, Zhibin Li b, Ling Pi c

a Department of Mathematics, East China Normal University, Dongchuan Rd. Minhang, Shanghai 200241, China
b Department of Computer Science, East China Normal University, Shanghai 200241, China
c Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

a r t i c l e i n f o
Keywords:
Variable exponent functional
BV space
Staircasing effect
Heat flow
0096-3003/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.amc.2010.01.094

* Corresponding author.
E-mail address: lifangswnu@126.com (F. Li).
a b s t r a c t

We study a functional with variable exponent, 1 < pðxÞ 6 2, which provides a model for
image denoising and restoration. Here pðxÞ is defined by the gradient information in the
observed image. The diffusion derived from the proposed model is between total variation
based regularization and Gaussian smoothing. The diffusion speed of the corresponding
heat equation is tuned by the variable exponent pðxÞ. The minimization problem and its
associated flow in a weakened formulation are discussed. The existence, uniqueness, stabil-
ity and long-time behavior of the proposed model are established in the variable exponent
functional space W1;pðxÞ. Experimental results illustrate the effectiveness of the model in
image restoration.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Image denoising is one of the fundamental problems in image processing with numerous applications. The aim of image
denoising is to design methods which can selectively smooth a noisy image without losing significant features such as edges.

Variational denoising methods are widely studied numerically and theoretically in recent years. In variational framework,
the denoising problem can be expressed as follows: given an original image f, it is assumed that it has been corrupted by
some additive noise n. Then the problem is to recover the true image u from
f ¼ uþ n:
Let us consider the following representative minimization problem
min EðuÞ ¼
Z

X
jrujpdxþ k

2

Z
X
ðu� f Þ2dx

� �
; ð1:1Þ
where 1 6 p 6 2 is a constant and k is a scalar parameter. The first term in the energy functional of (1.1) is a regularization
term and the second term is a fidelity term. As p ¼ 1, it is the widely used Rudin–Osher–Fatemi (ROF) model proposed in
1992 [12]. The considerable advantage of the ROF model is that it can well preserve edge sharpness and location while
smooth out noise. Mathematically, it is reasonable since its solution belongs to bounded variation (BV) space which allows
discontinuities in functions. However, the ROF model favors solutions that are piecewise constant which often causes the
staircasing effect [11,14,15]. The staircasing effect creates false edges which are misleading and not satisfactory in visual
effects.

Choosing p ¼ 2 in (1.1) results in isotropic diffusion which solves the staircasing effect problem but it oversmoothes
images such that the edges are blurred and dislocated. A fixed value of 1 < p < 2 results in anisotropic diffusion between
. All rights reserved.
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the ROF model and the isotropic smoothing. However, there is a trade-off between piecewise smooth regions reconstruction
and edge preservation.

Since different values of p should have different advantages, it encourages one to combine their benefits with a variable
exponent. Blomgren et al. proposed the following minimization problem in [1]
minfEðuÞ ¼
Z

X
jrujpðjrujÞdxg; ð1:2Þ
where lims!0pðsÞ ¼ 2; lims!1pðsÞ ¼ 1, and p is a monotonically decreasing function. This model is a variable exponent model.
It chooses diffusion speed through exponent and then can reduce the staircasing effect. Since p depends on ru, it is hard to
establish the lower semi-continuity of the energy functional. Bollt et al. proved that this problem with an L1 or L2 norm fidel-
ity term has a minimizer in [2], however, nothing about the associated heat equations was discussed.

Later, Chen et al. proposed the following model in [3]
minu2BVðXÞ\L2ðXÞ EðuÞ ¼
Z

X
uðx;DuÞ þ k

2

Z
X
ðu� f Þ2dx

� �
; ð1:3Þ
where
uðx; rÞ ¼
1

qðxÞ jrj
qðxÞ
; jrj 6 b;

jrj � bqðxÞ�bqðxÞ

qðxÞ ; jrj > b;

8<
:

qðxÞ ¼ 1þ 1
1þkjrGr�f ðxÞj ; GrðxÞ ¼ 1ffiffiffiffi

2p
p

r exp jxj2
2r2

� �
is the Gaussian kernel, k > 0; r > 0 are fixed parameter, and b is a user-defined

threshold. Mathematically, the energy minimization problem and the associated heat flow were discussed.
Inspired by the above models, we propose the model
minu2W1;pðxÞðXÞ\L2ðXÞ EpðxÞðuÞ ¼
Z

X

1
pðxÞ jrujpðxÞdxþ k

2

Z
X
ðu� f Þ2dx

� �
; ð1:4Þ
where pðxÞ ¼ 1þ gðxÞ and gðxÞ ¼ 1
1þkjrGr�f ðxÞj.

Clearly in the regions with edges, g ! 0 since the image gradient is large, model (1.4) approximates the ROF model, so the
edges will be preserved; In relatively smooth regions g ! 1 since image gradient is small, model (1.4) approximates isotropic
smoothing, so they will be processed into piecewise smooth regions. In other regions, the diffusion is properly adjusted by
the function pðxÞ.

The proposed model (1.4) is simpler than (1.3) in the formulation. Meanwhile, model (1.4) is more automatic than (1.3)
since no user-defined threshold b is needed in (1.4). Chen et al. studied problem (1.3) in BV framework [3], however, in this
paper we will study problem (1.4) in the variable exponent space W1;pðxÞ.

The paper is organized as follows: in Section 2 we give some important lemmas and then prove the existence and unique-
ness of the solution of the minimization problem (1.4). In Section 3 we prove the existence, uniqueness and stability of the
solution of the heat flow problem and discuss the long-time behavior. In Section 4 we provide our numerical algorithm and
experimental results to illustrate the effectiveness of our model in image restoration. Finally, we conclude the paper in Sec-
tion 5.
2. The minimization problem

Let X � Rn be a bounded open set with Lipschitz boundary, f 2 L1ðXÞ. By the definition of gðxÞ and Gaussian convolution,
we obtain rGr � f 2 C1ðXÞ. Then there exists a constant M > 0, such that jrGr � f j 6 M. Therefore, gðxÞP 1

1þM2 and
pðxÞP 1þ 1

1þM2 > 1. Meanwhile, since gðxÞ 6 1, we get 1 < pðxÞ 6 2 in the proposed model (1.4).
Variable exponent spaces. Let pðxÞ : X! ½1;þ1Þ be a measurable function, called variable exponent on X. By PðXÞ we de-

note the family of all measurable functions on X. Let p� :¼ ess inf
X

pðxÞ; pþ :¼ ess sup
X

pðxÞ. We define a functionalZ

Q pðxÞðuÞ ¼

X
jujpðxÞdx
and a norm by formula
kukpðxÞ ¼ kukLpðxÞðXÞ :¼ inffk > 0 : Q pðxÞðu=kÞ 6 1g:
Then the variable exponent Lebesgue space LpðxÞðXÞ and the variable exponent Sobolev space W1;pðxÞðXÞ are defined as
LpðxÞðXÞ ¼ fu : X! RjkukpðxÞ <1g;

W1;pðxÞðXÞ ¼ fu : X! Rju 2 LpðxÞðXÞ;ru 2 LpðxÞðXÞg:
With the norm kuk1;pðxÞ ¼ kukpðxÞ þ krukpðxÞ;W
1;pðxÞðXÞ becomes a Banach space. W1;pðxÞ

0 ðXÞ denotes the closure of C10 ðXÞ under
the norm k � k1;pðxÞ. See [4] for the basic theory of variable exponent spaces.
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In the following, we cite Lemmas 2.1 and 2.2 from [8]. Then we prove Lemmas 2.3–2.5 as the preparation for the proof of
the main theorems.

Lemma 2.1. Let pðxÞ; qðxÞ 2 PðXÞ, and for a.e. x 2 X we have pðxÞ 6 qðxÞ. Then LqðxÞðXÞ,!LpðxÞðXÞ;W1;qðxÞðXÞ,!W1;pðxÞðXÞ. The
norm of the embedding operator does not exceed 1þ jXj, where jXj denotes the measure of X.

Lemma 2.2. Let pðxÞ 2 PðXÞ, 1 < p� 6 pþ <1. Then LpðxÞðXÞ;W1;pðxÞðXÞ and W1;pðxÞ
0 ðXÞ are all reflexive Banach spaces.

Lemma 2.3. Let Fðru;u; xÞ ¼ 1
pðxÞ jrujpðxÞ þ k

2 ðu� f Þ2; pðxÞ ¼ 1þ gðxÞ as in model (1.4). Then for each z; x, Fðn; z; xÞ is convex in n.

Proof. As we know, if a multivariable function GðxÞ; x ¼ ðx1; . . . ; xnÞ is twice differentiable, then G is convex if and only if the
Hessian matrix r2GðxÞ ¼ @2G

@xi@xj
ðxÞ is semi-positively definite for abitrary x 2 domðGÞ. Let Fðn; z; xÞ ¼ 1

pðxÞ jnj
pðxÞ þ k

2 ðz� f Þ2. Then
Fni
¼ 1

pðxÞ pðxÞjnj
pðxÞ�1 ni

jnj ¼ jnj
pðxÞ�2ni;

Fninj
¼ ðpðxÞ � 2ÞjnjpðxÞ�4ninj þ jnjpðxÞ�2dij;

Fninj
gigj ¼ ðpðxÞ � 2ÞjnjpðxÞ�4ninjgigj þ jnjpðxÞ�2dijgigj; 8g 2 Rn;
where the same upper and lower index denotes summation from 1 to n. By Cauchy inequality
ninjgigj ¼
X

nigi

� �2
6

X
n2

i

� � X
g2

i

� �
¼ jnj2jgj2
and the condition 1 < pðxÞ 6 2, we obtain
Fninj
gigj P ðpðxÞ � 2ÞjnjpðxÞ�4jnj2jgj2 þ jnjpðxÞ�2jgj2 ¼ ðpðxÞ � 1ÞjnjpðxÞ�2jgj2 P 0:
Therefore, F is convex in n. h

Lemma 2.4. Let Fðn; z; xÞ be bounded from below, and the map n#Fðn; z; xÞ is convex in each z 2 R; x 2 X. Then the energy func-
tional IðuÞ :¼

R
X Fðru;u; xÞdx is weakly lower semi-continuous in W1;pðxÞðXÞ.

Mimicking the proof of Theorem 1 (p. 446 in [4]) in which p is a constant, we can prove the variable exponent case which
is Lemma 2.4. In the proof, we need the Sobolev embedding W1;pðxÞðXÞ,!LpðxÞðXÞ. Fortunately, under the assumption of this
paper, the Sobolev embedding holds. It is the following lemma.

Lemma 2.5. Let the dimension of X be n ¼ 2;1 6 p� 6 pðxÞ 6 pþ 6 2. Then the embedding W1;pðxÞ,!LpðxÞ is compact.

Proof. From n ¼ 2, we deduce that ðp�Þ� ¼ np�

n�p� ¼ n
n=p��1 P n

n�1 ¼ 2 P pþ. Since X is bounded open set with Lipschitz bound-

ary, by the Sobolev embedding theorem (where p is constant) in [4] and Lemma 2.1, we obtain
W1;pðxÞðXÞ,!W1;p� ðXÞ,!LpþðXÞ,!LpðxÞðXÞ;
where the embedding W1;p� ðXÞ,!LpþðXÞ is compact. Therefore, the embedding W1;pðxÞðXÞ,!LpðxÞðXÞ is compact.
Note that in our model (1.4), pðxÞ ¼ 1þ gðxÞ. By definition of gðxÞ, we have 1 < p� 6 pðxÞ 6 pþ 6 2, which satisfies the

condition of Lemma 2.5. Similar results are also established in [5,6]. h

Theorem 2.1. Let X � R2 be a bounded open set with Lipschitz boundary, f 2W1;pðxÞðXÞ \ L2ðXÞ. Then the minimization problem
min
u2W1;pðxÞðXÞ\L2ðXÞ

EpðxÞðuÞ ¼
Z

X

1
pðxÞ jrujpðxÞdxþ k

2

Z
X
ðu� f Þ2dx

� �
has a unique minimizer u 2W1;pðxÞðXÞ \ L2ðXÞ.

Proof. Let l ¼ inf
v2W1;pðxÞðXÞ\L2ðXÞ

EpðxÞðvÞ. Since f 2W1;pðxÞðXÞ \ L2ðXÞ;l is finite. Let fukg1k¼1;uk 2W1;pðxÞðXÞ \ L2ðXÞ be the mini-

mizing sequence such that EpðxÞðukÞ ! l. Then there exists a constant C, such that
Z
X

1
pðxÞ jrukjpðxÞdx 6 C and

Z
X
ðuk � f Þ2dx 6 C:
Hence
R

XðukÞ2dx 6 C. By Lemma 2.1, L2ðXÞ � LpðxÞðXÞ. So we have
R

X juj
pðxÞdx 6 C.

Together with the inequality
Z
X
jrukjpðxÞdx 6 C

Z
X

1
pþ
jrukjpðxÞdx 6 C

Z
X

1
pðxÞ jrukjpðxÞdx 6 C;
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we obtain QpðxÞðukÞ þ Q pðxÞðrukÞ 6 C. This implies that fukg1k¼1 is a uniformly bounded sequence in W1;pðxÞðXÞ. Meanwhile,
fukg1k¼1 is uniformly bounded in L2ðXÞ. Since W1;pðxÞðXÞ \ L2ðXÞ is a reflexive Banach space, there exists a subsequence
fukj
g1j¼1 � fukg1k¼1, and a function u 2W1;pðxÞðXÞ \ L2ðXÞ, such that
ukj
* u in W1;pðxÞðXÞ \ L2ðXÞ:
By Lemma 2.4, EpðxÞ is weakly lower semi-continuous in W1;pðxÞðXÞ \ L2ðXÞ. Then we have
EpðxÞðuÞ 6 lim inf
j!1

EpðxÞðukj
Þ ¼ l:
Therefore, u is a minimizer of EpðxÞ. The uniqueness follows from the strict convexity of EpðxÞðuÞ about u. h

Theorem 2.2. Let X � R2 be a bounded open set with Lipschitz boundary, w 2W1;pðxÞðXÞ \ L1ðXÞ; f �w 2W1;pðxÞ
0 ðXÞ \ L1ðXÞ.

Then the minimization problem
min
u2W1;pðxÞðXÞ\L2ðXÞ; u�w2W1;pðxÞ

0

EpðxÞðuÞ ¼
Z

X

1
pðxÞ jrujpðxÞdxþ k

2

Z
X
ðu� f Þ2dx

� �
ð2:1Þ
has a unique minimizer u 2W1;pðxÞðXÞ \ L1ðXÞ, which satisfies u�w 2W1;pðxÞ
0 ðXÞ \ L1ðXÞ.

Proof. Let u 2 Uð¼W1;pðxÞðXÞ \ L2ðXÞÞ and denote a ¼maxfkwk1; kfk1g. Let ua be the function u which has been cut-off at
�a and a, i.e. ua ¼minfa;maxf�a;ugg. By definition of a, it is easy to see that ua �w 2W1;pðxÞ

0 ðXÞ \ L2ðXÞ. Moreover,
rua ¼
ru; juj 6 a;

0; juj > a:

�

Hence jruaj 6 jruj a:e: x 2 X and so EpðxÞðuaÞ 6 EpðxÞðuÞ. It follows that it suffices to look for minimizers in the set
Ua ¼ fua : u 2 Ug.
Let l ¼ inf

v2Ua

EpðxÞðvÞ, and fukg1k¼1 � Ua be a minimizing sequence. Then EpðxÞðukÞ ! l. Hence
Z
X

1
pðxÞ jrukjpðxÞdx 6 C;

Z
X
ðuk � f Þ2dx 6 C:
By the W1;1 – Sobolev–Poincaré inequality, the embedding LpðxÞðXÞ,!L1ðXÞ and the fact uk �w 2W1;1
0 ðXÞ, we get
Z

X
jukjpðxÞdx ¼

Z
X
jukjpðxÞ�1jukjdx 6 apþ�1

Z
X
jukjdx 6 C

Z
X
juk �wj þ jwjdx 6 C

Z
X
jruk �rwjdxþ C 6 C

Z
X
jrukjdxþ C

6 C
Z

X
jrukjpðxÞdxþ C 6 C

Z
X

1
pþ
jrukjpðxÞdxþ C 6 C

Z
X

1
pðxÞ jrukjpðxÞdxþ C 6 C:
Together with the inequality
Z
X
jrukjpðxÞdx 6 C;
we obtain Q pðxÞðukÞ þ QpðxÞðrukÞ 6 C, which implies fukg1k¼1 is uniformly bounded in W1;pðxÞðXÞ. Meanwhile,
R

Xðuk � f Þ2dx 6 C
results in the uniformly boundedness of fukg1k¼1 in L2ðXÞ. Since W1;pðxÞðXÞ \ L2ðXÞ is a reflexive Banach space, there exists a
subsequence fukj

g1j¼1 � fukg1k¼1, and u 2W1;pðxÞðXÞ \ L2ðXÞ such that
ukj
* u in W1;pðxÞðXÞ \ L2ðXÞ:
Moreover, since fukg1k¼1 � Ua, we conclude that u 2W1;pðxÞ \ L1ðXÞ. We assert next that, u�w 2W1;pðxÞ
0 \ L1ðXÞ. To see

this, note that for w 2W1;pðxÞðXÞ \ L1ðXÞ;uk �w 2W1;pðxÞ
0 ðXÞ \ L1ðXÞ. Since W1;pðxÞ

0 ðXÞ \ L1ðXÞ is a closed, linear subspace
of W1;pðxÞðXÞ \ L1ðXÞ, it is weakly closed. Hence u�w 2W1;pðxÞ

0 ðXÞ \ L1ðXÞ. Then by Lemma 2.4,
EpðxÞðuÞ 6 lim inf
j!1

EpðxÞðukj
Þ ¼ l:
Therefore, we conclude that u is a minimizer of EpðxÞ. The uniqueness follows from the strictly convexity of EpðxÞðuÞ in u.
In the proof of Theorem 2.2, we use W1;1 – Sobolev–Poincaré inequality which is different from Theorem 2.1. In special

case with no fidelity term in the energy (called pðxÞ-Laplacian Dirichlet problem), the existence of minimizer has been
studied in [5,7].

Assume w 2W1;pðxÞðXÞ \ L1ðXÞ, and f �w 2W1;pðxÞ
0 ðXÞ \ L1ðXÞwhich means f has fixed boundary value f j@X ¼ wj@X. Let u

be the minimizer of problem (2.1). We calculate the corresponding Euler–Lagrange equation.
Taking u 2W1;pðxÞ

0 ðXÞ as a test function, we have uþ �u�w 2W1;pðxÞ
0 ðXÞ for each � > 0. Then
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d
d�

����
�¼0

EpðxÞðuþ �uÞ ¼
d

d�

����
�¼0

Z
X

1
pðxÞ jruþ �rujpðxÞdxþ k

2

Z
X
ðuþ �u� f Þ2dx

� �

¼
Z

X
jruþ �rujpðxÞ�1 ruþ �ru

jruþ �rujruþ kðuþ �u� f Þudx
� �����

�¼0

¼
Z

X
jrujpðxÞ�2ruruþ kðu� f Þudx ¼ 0:
We have that the minimizer of problem (2.1) satisfies the following equation with Dirichlet boundary condition:
divðjrujpðxÞ�2ruÞ � kðu� f Þ ¼ 0; x 2 X;

u ¼ w: x 2 @X:

(

Similarly, the minimizer of problem (1.4) satisfies the following equation with Neumann boundary condition
divðjrujpðxÞ�2ruÞ � kðu� f Þ ¼ 0; x 2 X;
@u
@N ¼ 0; x 2 @X;

(

where N denotes the unit outward normal of @X.
In [13], entropy solution for the pðxÞ-Laplace equation without fidelity term was studied. In a different perspective, we

study the associated flow corresponding to the Euler–Lagrange equation in this paper. In the following, we only study the
problem with Neumann boundary condition. Remark that Neumann or periodic boundary conditions are more natural for
image processing applications. However, the Dirichlet boundary conditions are a bit more interesting mathematically and all
of the same proofs hold (in a simplified manner) for the Neumann conditions. h
3. The associated heat flow to problem (1.4)

Using the steepest descent method, the associated heat flow to problem (1.4) is given by
ut ¼ divðjrujpðxÞ�2ruÞ � kðu� f Þ; ðx; tÞ 2 XT ; ð3:1Þ
@u
@N
¼ 0; ðx; tÞ 2 @XT ; ð3:2Þ

uð0Þ ¼ f ; ðx; tÞ 2 X� ft ¼ 0g: ð3:3Þ
Firstly, we derive another definition of weak solution of problem (3.1)–(3.3). Denote
Fðru;u; xÞ ¼ 1
pðxÞ jrujpðxÞ þ k

2
ðu� f Þ2:
Then (3.1) is equivalent to ut ¼ �F 0ðru;u; xÞ, where F 0ðru;u; xÞ denotes the Gateaux derivative of F about u.
Suppose u be a classical solution of (3.1)–(3.3). For each v 2 L2ð0; T; W1;pðxÞðXÞ \ L2ðXÞÞ, multiplying (3.1) by v � u, and

then integrating over X, we have that
Z
X

utðv � uÞdx ¼
Z

X
�F 0ðru; u; xÞðv � uÞdx:
From the convexity of Fðru; u; xÞ, we deduce that
Z
X

utðv � uÞdxþ EpðxÞðvÞP EpðxÞðuÞ: ð3:4Þ
Integrating over [0,s] for any s 2 ½0; T� yields
Z s

0

Z
X

utðv � uÞdxdt þ
Z s

0
EpðxÞðvÞdt P

Z s

0
EpðxÞðuÞdt: ð3:5Þ
On the other hand, if (3.5) holds, setting v ¼ uþ �u in (3.5) with u 2 C10 ðXÞ, we obtain
Z s

0

Z
X

ut�udxdt þ
Z s

0
EpðxÞðuþ �uÞdt P

Z s

0
EpðxÞðuÞdt;
which implies
R s

0

R
X ut�udxdt þ

R s
0 EpðxÞðuþ �uÞdt attains its minimum at � ¼ 0. Hence
d
d�

����
�¼0

Z s

0

Z
X

ut�udxdt þ
Z s

0
EpðxÞðuþ �uÞdt

� 	
¼ 0;
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that is,
Z s

0

Z
X

_uudxdt þ
Z s

0

Z
X

F 0ðru; u; xÞudxdt ¼ 0:
Since u is arbitrary, _uþ F 0ðru;u; xÞ ¼ 0. That is to say, if u satisfies (3.5), then u is a weak solution of (3.1) in the sense of
distribution. This motivates us to give the following definition.

Definition. A function u 2 L2ð0; T; W1;pðxÞðXÞ \ L2ðXÞÞ, with _u 2 L2ðXTÞ is called a weak solution of Eqs. (3.1)–(3.3) if uð0Þ ¼ f ,
and for all v 2 L2ð0; T; W1;pðxÞðXÞ \ L2ðXÞÞ, for all s 2 ½0; T�, (3.5) holds.

Let uðnÞ ¼ 1
pðxÞ jnj

pðxÞ, then the derivative is urðnÞ ¼ jnj
pðxÞ�2n. Setting
u�ðnÞ ¼ 1
pðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnj2 þ �2

q� 	pðxÞ
with 0 < � < 1. Then
u�
r ðnÞ ¼

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnj2 þ �2

q� 	2�pðxÞ :
It is easy to see that u�ðnÞ is convex in n and u� ! u as �! 0.
To prove the existence of solution to (3.1)–(3.3), we first discuss the solution of the approximated problem
ut ¼ �Duþ divðu�
r ðruÞÞ � kðu� fdÞ; ðx; tÞ 2 XT ; ð3:6Þ

@u
@N
¼ 0; ðx; tÞ 2 @XT ; ð3:7Þ

uð0Þ ¼ fd; ðx; tÞ 2 X� ft ¼ 0g; ð3:8Þ
where fd 2 C1ðXÞ has the following properties:
fd ! f in L2ðXÞ; kfdkL1ðXÞ 6 kfkL1ðXÞ; uðrfdÞ 6 uðrf Þ: ð3:9Þ
Since 1 < pðxÞ 6 2, for uðsÞ ¼ 1
pðxÞ s

pðxÞ, we have u0ðsÞ ¼ 1
pðxÞpðxÞspðxÞ�1 ¼ spðxÞ�1 > 0ðs > 0Þ. Hence u is monotonically increasing

function in s ðs > 0Þ. The convexity of u yields
u�ðrfdÞ ¼
1

pðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrfdj2 þ �2

q� 	pðxÞ

6
1

pðxÞ ðjrfdj þ �ÞpðxÞ 6
1

pðxÞ2
pðxÞ�1ðjrfdjpðxÞ þ �pðxÞÞ

6 2pðxÞ�1 uðrfdÞ þ
1

pðxÞ �
pðxÞ

� 	
6 2ðuðrf Þ þ �Þ: ð3:10Þ
The existence of fd can be proved by the standard argument as in [10].

Lemma 3.1. The problem (3.6)–(3.8) has a unique weak solution u�d, with u�d 2 L1ð0; T; W1;pðxÞðXÞ \ L2ðXÞÞ and _u�d 2
L2ð0; T; L2ðXÞÞ such that
Z 1

0

Z
X
j _u�dj

2dxdt þ sup
t>0

Z
X

�
2
jru�dj

2 þu�ðru�dÞ þ
k
2
ðu�d � fdÞ2dx

� �
6 2

Z
X

�
2
jrfdj2dxþuðrf Þdxþ 1

� �
: ð3:11Þ
Proof. (3.6)–(3.8) is quasilinear parabolic equations of divergence type. Since it satisfies all necessary conditions which can
be verified by directly calculation, (3.6)–(3.8) has a unique weak solution u�d [9]. Then u�d satisfies (3.6). Multiplying (3.6) by _u�d
and integrating on X, we get
Z
X
j _u�dj

2 ¼
Z

X
� _u�dDu�ddxþ

Z
X

_u�ddivðu�
r ðru�dÞÞdx� k

Z
X

_u�dðu�d � fdÞdx:
Then
 Z
X
j _u�dj

2dxþ d
dt

Z
X

�
2
jru�dj

2 þu�ðru�dÞ þ
k
2
ðu�d � fdÞ2dx

� �
¼ 0:
Integrating the above formula on (0, t),
Z s

0

Z
X
j _u�dj

2dxdt þ
Z

X

�
2
jru�dj

2 þu�ðru�dÞ þ
k
2
ðu�d � fdÞ2dx

� �
¼

Z
X

�
2
jrfdj2 þu�ðrfdÞ þ

k
2
ðfd � fdÞ2dx

� �
:
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Therefore,
Z 1

0

Z
X
j _u�dj

2dxdt þ sup
t>0

Z
X

�
2
jru�dj

2 þu�ðru�dÞ þ
k
2
ðu�d � fdÞ2dx

� �
6 2

Z
X

�
2
jrfdj2 þu�ðrfdÞdx

� �
:

Since 0 < � < 1, we get the conclusion. h

Lemma 3.2. Let f 2W1;pðxÞ \ L1ðXÞ, and u�d be the weak solution of the problem (3.6)–(3.8). Then
ku�dkL1ðXT Þ 6 kfkL1ðXÞ: ð3:12Þ
Proof. Let G be a truncation function of class C1 such that GðtÞ ¼ 0 on ð�1;0�, and G is strictly increasing in ½0;þ1Þ, and
G0 6 M where M is a constant. Let k ¼ kfkL1ðXÞ and set v ¼ Gðu�d � kÞ. Since u�d 2W1;pðxÞðXÞ \ L2ðXÞ, by the chain rule we get
v 2W1;pðxÞðXÞ \ L2ðXÞ, and rv ¼ G0ðu�d � kÞru�d. Multiplying (3.6) by v and integrating over X yields
0 ¼
Z

X

_u�dGðu�d � kÞdxþ �
Z

X
jru�dj

2G0ðu�d � kÞdxþ
Z

X
u�

r ðru�dÞru�dG0ðu�d � kÞdxþ k
Z

X
ðu�d � fdÞGðu�d � kÞdx: ð3:13Þ
By the definition of u�;
R

X u�
r ðru�dÞru�dG0ðu�d � kÞdx P 0. It is obvious that �

R
X jru�dj

2G0ðu�d � kÞdx P 0. If
R

Xðu�d � fdÞ
Gðu�d � kÞdx 6 0, then we get u�d 6 kfdkL1ðXÞ 6 kfkL1ðXÞ ¼ k. Otherwise, we have

R
Xðu�d � fdÞGðu�d � kÞdx P 0. Hence (3.13) yields
Z

X

_u�dGðu�d � kÞdx 6 0:
Since 0 6 G0 6 M we deduce that
d
dt

Z
X
ðGðu�d � kÞÞ2dx 6 0:
Therefore
R

XðGðu�d � kÞÞ2dx is monotonically decreasing function about t and then
Z
X
ðGðu�d � kÞÞ2dx 6

Z
X
ðGðu�d � kÞÞ2dxjt¼0 ¼

Z
X
ðGðfd � kÞÞ2dx ¼ 0:
So we have proved that u�d 6 k. Similarly, u�d P �k can be proved. h

Theorem 3.1 (existence and uniqueness). Suppose f 2W1;pðxÞðXÞ \ L1ðXÞ. Then (3.1)–(3.3) has a unique weak solution
u 2 L1ð0; T;W1;pðxÞðXÞ \ L1ðXÞÞ, with _u 2 L2ðXTÞ.

Proof. First we fix d > 0 and pass to the limit �! 0. Let fu�dg be the sequence of solution to (3.6)–(3.8). By (3.11) and (3.12),
we get that fu�dg has uniformly bounded L1ðX1Þ norm about �, and f _u�dg has uniformly bounded L2ðX1Þ norm. Then there
exists a subsequence, also denoted by fu�dg, and a function ud 2 L1ðX1Þ, such that as �! 0,
u�d * ud weakly � in L1ðX1Þ; ð3:14Þ
_u�d * w weakly in L2ðX1Þ: ð3:15Þ
The same argument used in the proof of Lemma 3.1 [16] gives us that _ud ¼ w;udð0Þ ¼ fd. Then we have _ud 2 L2ðX1Þ.
Moreover, for all / 2 L2ðXÞ,

Z

X
ðu�dð�; tÞ� fdÞ/ðxÞdx¼

Z t

0

Z
X

_u�dðx;sÞ1½0;t�ðsÞ/ðxÞdxds!
Z t

0

Z
X

_udðx;sÞ1½0;t�ðsÞ/ðxÞdxdt¼
Z

X
ðudð�; tÞ� fdÞ/ðxÞdx ð�! 0Þ;
which implies that
u�dð�; tÞ* udð�; tÞ weakly in L2ðXÞ:
From (3.11), for each t > 0; fu�dð�; tÞg is a uniformly bounded sequence in W1;1ðXÞ. Then there exists a subsequence, also
denoted by fu�dð�; tÞg, such that
u�dð�; tÞ ! udð�; tÞ strongly in L1ðXÞ: ð3:16Þ
From (3.12), (3.14) and (3.16), we obtain
Z
X
ju�dð�; tÞ � udð�; tÞj2dx 6 ku�dð�; tÞ � udð�; tÞkL1ðXÞ

Z
X
ju�dð�; tÞ � udð�; tÞjdx 6 CkfkL1ðXÞ

Z
X
ju�dð�; tÞ

� udð�; tÞjdxdt ! 0 ðas �! 0Þ:
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Therefore,
u�dð�; tÞ ! udð�; tÞ strongly in L2ðXÞ: ð3:17Þ
For all v 2 L2ðð0;1Þ; H1ðXÞÞ, multiplying (3.6) (where u is replaced by u�d) by ðv � u�dÞ and using the convexity of u�, we get
Z s

0

Z
X

_u�dðv � u�dÞ þ
�
2
jrv j2 þu�ðrvÞ þ k

2
ðv � fdÞ2dxdt P

Z s

0

Z
X

�
2
jru�dj

2 þu�ðru�dÞ þ
k
2
ðu�d � fdÞ2dxdt:
From (3.15), (3.17) and the lower semi-continuity of u� we obtain
Z s

0

Z
X

_u�dðv � u�dÞ þu�ðrvÞ þ k
2
ðv � fdÞ2dxdt P lim inf

�!0

Z s

0

Z
X
u�ðru�dÞ þ

k
2
ðu�d � fdÞ2dxdt:
Letting �! 0, we obtain that
Z s

0

Z
X

_udðv � udÞ þuðrvÞ þ k
2
ðv � fdÞ2dxdt P

Z s

0

Z
X
uðrudÞ þ

k
2
ðud � fdÞ2dxdt ð3:18Þ
holds for all v 2 L2ð0;1; H1ðXÞÞ. By approximation, (3.18) still holds for any v 2 L2ðð0;1Þ; W1;pðxÞðXÞ \ L2ðXÞÞ.
It remains to pass to the limit as d! 0. In (3.11) we let �! 0 to get that
Z 1

0

Z
X
j _udj2dxdt þ sup

t>0

Z
X

uðrudÞ þ
k
2
ðud � fdÞ2dx

� �
6 C;
where C depends on f. Therefore, fudg is uniformly bounded in L1ð0;1; W1;pðxÞðXÞ \ L2ðXÞÞ, and then uniformly bounded in
W1;1ðXÞ. We also have _ud is uniformly bounded in L2ðX1Þ. Moreover, letting �! 0 in (3.12) yields
kudkL1ðX1Þ 6 kfkL1ðXÞ:
Hence fudg is uniformly bounded in L1ðX1Þ. By the same argument used in (3.14), (3.15) and (3.17), there exists a subse-
quence, also denoted by fudg and a function u 2 L1ðð0;1Þ; W1;pðxÞðXÞ \ L1ðXÞÞ; _u 2 L2ðX1Þ such that as d! 0,
ud * u weakly � in L1ðX1Þ; ð3:19Þ
_ud * _u weakly in L2ðX1Þ; ð3:20Þ
udð�; tÞ ! uð�; tÞ strongly in L2ðXÞ and uniformly for t: ð3:21Þ
Using the lower semi-continuity of u and (3.19)–(3.21), and letting d! 0 in (3.18), we conclude that for all
v 2W1;pðxÞðXÞ \ L2ðXÞ
Z s

0

Z
X

utðv � uÞdxdt þ
Z s

0
EpðxÞðvÞdt P

Z s

0
EpðxÞðvÞdt:
By definition, u is the weak solution of problem (3.1)–(3.3).
Uniqueness follows directly from the following stability theorem by letting f1 ¼ f2. h

Theorem 3.2 (stability). Assume u1 and u2 are both weak solutions of (3.1)–(3.3) with initial values f1; f2 2W1;pðxÞðXÞ \ L1ðXÞ.
Then for any t > 0,
ku1 � u2kL1ðXÞ 6 kf1 � f2kL1ðXÞ:
Proof. Set k ¼ kf1 � f2kL1ðXÞ. Define
v ¼ u1 � ðu1 � u2 � kÞþ
w ¼ u2 þ ðu1 � u2 � kÞþ

(
;

where
ðu1 � u2 � kÞþ ¼
u1 � u2 � k; if u1 � u2 � k P 0;
0; otherwise:

�

Then
rv ¼
ru1; u1 � u2 6 k;
ru2; u1 � u2 P k;

�
rw ¼

ru2; u1 � u2 6 k;
ru1: u1 � u2 P k:

�

By the definition of weak solution of (3.1)–(3.3), for all t > 0, we have
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Z
X

_u1ðv � u1Þ þuðrvÞ þ k
2
ðv � f1Þ2dxdt P

Z
X
uðru1Þ þ

k
2
ðu1 � f1Þ2dxdt;Z

X

_u2ðw� u2Þ þuðrwÞ þ k
2
ðw� f2Þ2dxdt P

Z
X
uðru2Þ þ

k
2
ðu2 � f2Þ2dxdt:
Taking summation yields
Z
X

_u1ðv � u1Þ þ _u2ðw� u2Þ þuðrvÞ þuðrwÞ þ k
2
ðv � f1Þ2 þ

k
2
ðw� f2Þ2dxdt

P
Z

X
uðru1Þ þuðru2Þ þ

k
2
ðu1 � f1Þ2 þ

k
2
ðu2 � f2Þ2dxdt:
By the definition of v and w, it is clear that
uðrvÞ þuðrwÞ ¼ uðru1Þ þuðru2Þ;
and
 Z
X
ðu1 � f1Þ2 þ ðu2 � f2Þ2 � ðv � f1Þ2 � ðw� f2Þ2dx ¼

Z
X
ðu1 � f1Þðu1 þ v � 2f 1Þ þ ðu2 �wÞðu2 þw� 2f 2Þdx

¼
Z

X
ðu1 � u2 � kÞþ 2u1 � 2f 1 � 2u2 þ 2f 2 � 2ðu1 � u2 � kÞþ


 �
dx

¼
Z

X
2ðu1 � u2 � kÞþððu1 � u2 � kÞ � ðu1 � u2 � kÞþ � ðf1 � f2 � kÞÞdx:
By the definition of k, we have f1 � f2 � k 6 0. If ðu1 � u2 � kÞþ ¼ 0, then
Z
X
ðu1 � u2 � kÞþððu1 � u2 � kÞ � ðu1 � u2 � kÞþ � ðf1 � f2 � kÞÞdx ¼ 0:
If ðu1 � u2 � kÞþ > 0, then
Z
X
ðu1 � u2 � kÞþððu1 � u2 � kÞ � ðu1 � u2 � kÞþ � ðf1 � f2 � kÞÞdx

P
Z

X
ðu1 � u2 � kÞþððu1 � u2 � kÞ � ðu1 � u2 � kÞÞdx ¼ 0:
So we get
Z
X
ððv � f1Þ2 þ ðw� f2Þ2Þdx 6

Z
X
ððu1 � f1Þ2 þ ðu2 � f2Þ2Þdx:
Therefore,
Z
X
ð _u1ðv � u1Þ þ _u2ðw� u2ÞÞdx P 0:
By the definition of v and w, we get
Z
X
ð _u1 � _u2Þðu1 � u2 � kÞþdx 6 0;
that is,
d
dt

Z
X
jðu1 � u2 � kÞþj

2dx 6 0:
So
R

X jðu1 � u2 � kÞþj
2dx is monotonically decreasing function of t, then
Z

X
jðu1 � u2 � kÞþj

2dx 6
Z

X
jðf1 � f2 � kÞþj

2dxð¼ 0Þ:
Therefore, u1 � u2 6 k. Similarly we can prove u1 � u2 P �k h

Theorem 3.3 (long time behavior). Let f 2W1;pðxÞðXÞ \ L1ðXÞ. Then as t !1, the weak solution uðx; tÞ to (3.1)–(3.3) converges
strongly to the solution of the minimization problem (1.4) in L2ðXÞ.

Proof. By the definition of weak solution (3.5), for all s > 0 and for all vðxÞ 2W1;pðxÞðXÞ \ L2ðXÞ, we have
Z s

0

Z
X

_uðx; tÞðvðxÞ � uðx; tÞÞdxdt þ
Z s

0
EpðxÞðvðxÞÞdt P

Z s

0
EpðxÞðuðx; tÞÞdt;
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that is,
Fig. 1.
the rest
Z
X
ðuðx; sÞ � f ðxÞÞvðxÞdx� 1

2

Z
X
ðu2ðx; sÞ � f 2ðxÞÞdxþ s

Z
X
uðrvðxÞÞdxþ s

k
2

Z
X
ðvðxÞ � f ðxÞÞ2dx

P
Z s

0

Z
X
uðruÞdxdt þ k

2

Z s

0

Z
X
ðu� f Þ2dxdt: ð3:22Þ
Define
wðx; sÞ ¼ 1
s

Z s

0
uðx; tÞdt:
Since u 2 L1ð0;1; W1;pðxÞðXÞ \ L1ðXÞÞ for any s > 0, we have wð�; sÞ is uniformly bounded in W1;pðxÞðXÞ and L1ðXÞ. Then there
exists a subsequence, also denoted by fwðx; sÞg, and a function ~u 2W1;pðxÞðXÞ \ L1ðXÞ, such that
wðx; sÞ* ~u in W1;pðxÞðXÞ;
wðx; sÞ ! ~u in L2ðXÞ:
Dividing (3.22) by s, then letting s!1, we obtain
EpðxÞðvÞP EpðxÞð~uÞ
for all vðxÞ 2W1;pðxÞðXÞ \ L2ðXÞ. Hence, ~u is the solution to problem (1.4). h
Comparison of the proposed model and the ROF model. (a) The true image; (b) the noisy image; (c) the restoration result by the ROF model; and (d)
oration result by the proposed model.
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4. Numerical results

We consider dimension n ¼ 2. Suppose the image size is N � N. Set s be the time step and h ¼ 1 be the space step. Let
xi ¼ ih; yj ¼ jh; i; j ¼ 0;1; . . . ;N; tn ¼ ns;n ¼ 0;1; . . . ; un

i;j ¼ uðxi; yj; tnÞ; u0
ij ¼ f ðxi; yjÞ. Define
Fig. 2.
(d) the
ðD�x uÞi;j ¼ �½ui�1;j � ui;j�; ðD�y uÞi;j ¼ �½ui;j�1 � ui;j�;

jðDxuÞi;jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþx ðui;jÞÞ2 þ ðm½Dþy ðui;jÞ;D�y ðui;jÞ�Þ2 þ 0:001

q
;

jðDyuÞi;jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþy ðui;jÞÞ2 þ ðm½Dþx ðui;jÞ;D�x ðui;jÞ�Þ2 þ 0:001

q
;

where m½a; b� ¼ sign aþsign b
2

� �
�minðjaj; jbjÞ. Then the finite difference scheme of the heat flow (3.1)–(3.3) is given by
ukþ1 ¼ uk þ s D�x
Dþx uk

jDxukj1�g

 !
þ D�y

Dþy uk

jDyukj1�g

 !
� kðuk � f Þ

 !
;

u0 ¼ f ;
where the subscripts i, j are omitted for simplicity. Remark that the Neumann boundary condition (3.2) is implemented by
extend the image matrix symmetrically. To illustrate that our model has the advantage of reducing the staircasing effect
while preserving edges, we run the ROF model as comparison. The numerical scheme of the ROF model is according to [12].
Comparison of the proposed model and the ROF model. (a) A part of Lena image; (b) the noisy image; (c) the restoration result by the ROF model; and
restoration result by the proposed model.



Fig. 3. Comparison of the proposed model and the ROF model. (a) The noisy image; (b) the restoration result by the ROF model; and (c) the restoration
result by the proposed model.

Fig. 4. Comparison of the proposed model and the ROF model. (a) Noisy MRI image of a heart; (b) the restoration result by the ROF model; and (c) the
restoration result by the proposed model.
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In all the experiments in this paper, the time step is set as 0.05, the fidelity coefficient k is set as 0.01, k ¼ 0:005, and
r ¼ 0:5. The stopping criterion of both the ROF model and our model is the relative difference of the restored image should
satisfy the following inequality:
kukþ1 � ukk2

kukþ1k2
< 10�4:
In Fig. 1, a typical piecewise smooth image is tested. Fig. 1(b) is the noisy version of Fig. 1(a). The restoration results by the
ROF model and the proposed model are showed in Fig. 1(c) and (d), respectively. We can see in both results that the edges in
the centerlines are preserved. However, in Fig. 1(c) the staircasing effect is obvious in the smooth regions, while in Fig. 1(d)
the staircasing effect is successfully reduced.

A part of Lena image is tested in Fig. 2. Fig. 2(b) is the noisy version of Fig. 2(a). Figs. 2(c) and (d) show the restoration
results by the ROF model and the proposed model, respectively. We can see that the proposed model recovers sharp edges
as effectively as the ROF model. Meanwhile, in the smooth regions such as the shoulder, the staircasing effect can be seen in
Fig. 2(c), while in Fig. 2(d) almost no staircasing effect occurs in these regions such that it seems more natural.

In Fig. 3, we test a character image with smooth background. Fig. 3(a) shows the noisy image. Figs. 3(b) and (c) show the
restoration results by the ROF model and the proposed model, respectively. We observe that in both results the edges of the
characters are preserved. Meanwhile, almost no staircasing effect appears when processed by the proposed model.

We test a medical image in Fig. 4. An MRI image of a heart with noise is showed in Fig. 4(a). Figs. 4(b) and (c) show the
restoration results by the ROF model and the proposed model, respectively. The staircasing effect is obvious on the surface of
the organ in Fig. 4(b), in contrast, almost no staircasing effect occurs in Fig. 4(c) where the organ surface is smooth.

5. Conclusion

In this paper, we have studied a variational exponent ð1 < pðxÞ 6 2Þ functional to recover images based on the models
(1.2) and (1.3). The significant difference between our model and (1.3) is that in our model (1.4) pðxÞ can approximate 1
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(but larger than 1) while in (1.3) pðxÞwill be equal to 1 in regions with large gradient. However, theoretically, the two models
are discussed in different spaces. (1.3) is studied in BV space while (1.4) is studied in variable exponent Sobolev space W1;pðxÞ.

The case that includes pðxÞ ¼ 1 is interesting. Some lemmas in Section 3 no longer hold any more. If 1 6 pðxÞ 6 2, other
kind of variable exponent space (not W1;pðxÞ) should be introduced. This will be the future work.
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