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1. Introduction

Image denoising is one of the fundamental problems in image processing with numerous applications. The aim of image
denoising is to design methods which can selectively smooth a noisy image without losing significant features such as edges.

Variational denoising methods are widely studied numerically and theoretically in recent years. In variational framework,
the denoising problem can be expressed as follows: given an original image f, it is assumed that it has been corrupted by
some additive noise n. Then the problem is to recover the true image u from

f=u+n.

Let us consider the following representative minimization problem
. ' )
min { E(u) = / VupPdx + % /(u —fdx !, (1.1)
Q 2 Jo

where 1 < p < 2 is a constant and 4 is a scalar parameter. The first term in the energy functional of (1.1) is a regularization
term and the second term is a fidelity term. As p = 1, it is the widely used Rudin-Osher-Fatemi (ROF) model proposed in
1992 [12]. The considerable advantage of the ROF model is that it can well preserve edge sharpness and location while
smooth out noise. Mathematically, it is reasonable since its solution belongs to bounded variation (BV) space which allows
discontinuities in functions. However, the ROF model favors solutions that are piecewise constant which often causes the
staircasing effect [11,14,15]. The staircasing effect creates false edges which are misleading and not satisfactory in visual
effects.

Choosing p =2 in (1.1) results in isotropic diffusion which solves the staircasing effect problem but it oversmoothes
images such that the edges are blurred and dislocated. A fixed value of 1 < p < 2 results in anisotropic diffusion between
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the ROF model and the isotropic smoothing. However, there is a trade-off between piecewise smooth regions reconstruction
and edge preservation.

Since different values of p should have different advantages, it encourages one to combine their benefits with a variable
exponent. Blomgren et al. proposed the following minimization problem in [1]

min{E(u) = / VPV gy (1.2)
Q

where lim;_op(s) = 2,lim,_..p(s) = 1, and p is a monotonically decreasing function. This model is a variable exponent model.
It chooses diffusion speed through exponent and then can reduce the staircasing effect. Since p depends on Vu, it is hard to
establish the lower semi-continuity of the energy functional. Bollt et al. proved that this problem with an L' or L? norm fidel-
ity term has a minimizer in [2], however, nothing about the associated heat equations was discussed.

Later, Chen et al. proposed the following model in [3]

. A
mmueBV(Q)mLZ(Q){E(u) =/, ¢(x,Du) i) [2(” —f)zdx}7 (1.3)
where
1 |p19®)
qx) ‘r‘ ’ |T| < ﬂ7
QX,1) = o Ba(x)—p)
Irl—=m— > 8,

4(X) =1+ ygverray Go(X) = 75 €xp (ﬁ) is the Gaussian kernel, k > 0, ¢ > 0 are fixed parameter, and § is a user-defined

~ V2no 202
threshold. Mathematically, the energy minimization problem and the associated heat flow were discussed.
Inspired by the above models, we propose the model

1
o P(X)

where p(x) =1 +g(x) and g(X) =t 7w

Clearly in the regions with edges, g — 0 since the image gradient is large, model (1.4) approximates the ROF model, so the
edges will be preserved; In relatively smooth regions g — 1 since image gradient is small, model (1.4) approximates isotropic
smoothing, so they will be processed into piecewise smooth regions. In other regions, the diffusion is properly adjusted by
the function p(x).

The proposed model (1.4) is simpler than (1.3) in the formulation. Meanwhile, model (1.4) is more automatic than (1.3)
since no user-defined threshold B is needed in (1.4). Chen et al. studied problem (1.3) in BV framework [3], however, in this
paper we will study problem (1.4) in the variable exponent space W'?®,

The paper is organized as follows: in Section 2 we give some important lemmas and then prove the existence and unique-
ness of the solution of the minimization problem (1.4). In Section 3 we prove the existence, uniqueness and stability of the
solution of the heat flow problem and discuss the long-time behavior. In Section 4 we provide our numerical algorithm and
experimental results to illustrate the effectiveness of our model in image restoration. Finally, we conclude the paper in Sec-
tion 5.

2

minuewl-mx)(gmz(g){EP<X)(U) = |Vu®dx 3 /z(u —f)zdx}, (1.4)

2. The minimization problem

Let @ C R" be a bounded open set with Lipschitz boundary, f € L*(Q). By the definition of g(x) and Gaussian convolution,
we obtain VG, «f € C*(Q). Then there exists a constant M > 0, such that |VG, xf| < M. Therefore, g(x) > H‘W and

px) =1+ Hle > 1. Meanwhile, since g(x) < 1, we get 1 < p(x) < 2 in the proposed model (1.4).

Variable exponent spaces. Let p(x) : Q@ — [1, +o00) be a measurable function, called variable exponent on Q. By 2(Q) we de-
note the family of all measurable functions on Q. Let p~ := essigfp(x), + := esssupp(x). We define a functional
Q

Qp(u) = /Q |u|p(x)dx
and a norm by formula
[Ullpey = [1tllpeo gy := {2 >0 Qe (u/2) < 13-
Then the variable exponent Lebesgue space [’™(Q) and the variable exponent Sobolev space W'?™(Q) are defined as
L(Q) = {u: Q — RfJull ) < oo},
WM (Q) = {u: Q — Rju € [’™(Q), Vu € [’¥(Q)}.

With the norm [[ul; ) = Ul + [ Vttlly . W' () becomes a Banach space. Wy”™ () denotes the closure of Cy' () under
the norm || - [|; ;- See [4] for the basic theory of variable exponent spaces.
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In the following, we cite Lemmas 2.1 and 2.2 from [8]. Then we prove Lemmas 2.3-2.5 as the preparation for the proof of
the main theorems.

Lemma 2.1. Let p(x),q(x) € 2(Q), and for a.e. x € Q we have p(x) < q(x). Then L1 (Q)—LP® (Q) W™ (Q)W!PW (Q). The
norm of the embedding operator does not exceed 1 + |Q|, where |Q| denotes the measure of Q.

Lemma 2.2. Let p(x) € #(Q), 1 <p~ < p* < oc. Then [P (Q), W™ (Q) and W™ (Q) are all reflexive Banach spaces.

Lemma 2.3. Let F(Vu,u,x) = ﬁx) |VulP® + 4(u — )2, p(x) =1+ g(x) as in model (1.4). Then for each z,x, F(¢,z,x) is convex in ¢.

Proof. As we know, if a multivariable function G(x),x = (x1,...,X,) is twice differentiable, then G is convex if and only if the
Hessian matrix V2G(x) = 0;259 (x) is semi-positively definite for abitrary x € dom(G). Let F(¢,2,X) = ;15 |EPY 4 2(z—f)*. Then
1 aé 22
F. = — p(x &:P(X) 1_5: 51’(") &,
Fee = (D(%) — 2)|f‘p(x>74éi§vj + [P 2y,
Foq'f = (p(x) = 2)P™ g’ + 1P o'y, v e R,

where the same upper and lower index denotes summation from 1 to n. By Cauchy inequality

agnn = (X am) < (X&) (X ne) =1 m?
and the condition 1 < p(x) < 2, we obtain
Feg'? = (p) = 2)1EP 1Pl + 1672 = () = DI 2 Inf?
Therefore, F is convex in &, O
Lemma 2 4. Let F(¢,z,x) be bounded from below, and the map &—F(¢&,z,X) is convex in each z € R, x € Q. Then the energy func-
tional I(u) := [, F(Vu,u,x)dx is weakly lower semi-continuous in WP (@),

Mlmlckmg the proof of Theorem 1 (p. 446 in [4]) in which p is a constant, we can prove the variable exponent case which
is Lemma 2.4. In the proof, we need the Sobolev embedding W'?™ (Q)—I”™ (Q). Fortunately, under the assumption of this
paper, the Sobolev embedding holds. It is the following lemma.

Lemma 2.5. Let the dimension of @ be n =21 < p~ < p(x) < p* < 2. Then the embedding W!'P® [P is compact.

Proof. From n = 2, we deduce that (p~)" = n’i"; =0T 2 g = =2 > p*. Since Q is bounded open set with Lipschitz bound-

ary, by the Sobolev embedding theorem (where p is constant) in [4] and Lemma 2.1, we obtain
W@ W' ()17 ()= 1(Q),

where the embedding W'?™ (Q)—LP" (Q) is compact. Therefore, the embedding W'?® (Q)—LP¥(Q) is compact.
Note that in our model (1.4), p(x) = 1 + g(x). By definition of g(x), we have 1 < p~ < p(x) < p™ < 2, which satisfies the
condition of Lemma 2.5. Similar results are also established in [5,6]. O

Theorem 2.1. Let Q C R? be a bounded open set with Lipschitz boundary, f € W'?™(Q) N L*(Q). Then the minimization problem

mm { / [VulPYdx + = / }
ueW P (Q)nL?(Q p 2

has a unique minimizer u € W'*™(Q) N [*(Q).

Proof. Let u = inf Eyn (). Since f € W' (Q) N L*(Q), u is finite. Let {u}i,, u € W™ (Q) N [*(Q) be the mini-
veW' P (Q)NL%(Q)

mizing sequence such that E,)(ux) — u. Then there exists a constant C, such that

/ \Vuk\ x < C and/u,< dx < C.
o P(x)

Hence [,(u)*dx < C. By Lemma 2.1, [*(Q) ¢ [’ (Q). So we have [, [ul'*'dx < C.
Together with the inequality

/Q Vu " dx < C /Q I%Wuu"( / 1w poax < ¢
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we obtain Qpy, (Ux) + Quu (Vi) < C. This implies that {u};, is a uniformly bounded sequence in W™ (). Meanwhile,
{w};2, is uniformly bounded in L*(2). Since W'*™(Q) nL*(Q) is a reflexive Banach space, there exists a subsequence
{w}y C {w}i,, and a function u € W' (Q) N L*(Q), such that

w, — uin WP (Q)n1*(Q).

By Lemma 2.4, E,, is weakly lower semi-continuous in W'?®(Q) N [*(Q). Then we have

Epio (1) < liminf By (1) = .
—00
Therefore, u is a minimizer of E,«,. The uniqueness follows from the strict convexity of E, (1) about u. O

Theorem 2.2. Let Q C R? be a bounded open set with Lipschitz boundary, w € W% (Q) N L*(Q),f —w € WP (Q) nL*(Q).
Then the minimization problem

1 J
min Epo (U :/ — Vu”(")dx-f——/ u-— de} 2.1
ueW P Q)12 (0), u-wew "M { o (1) o P(X) v 2 sz( D @1

has a unique minimizer u € W'*®(Q) N L™ (L), which satisfies u — w € W*™(Q) N L*(Q).

Proof. Let u € U(= W™ (Q) n[*(Q)) and denote a = max{|w/|_, |If|..}. Let u, be the function u which has been cut-off at
—a and q, i.e. u, = min{a, max{—a,u}}. By definition of g, it is easy to see that u, — w € W;"*(Q) N L*(). Moreover,

Vu, |u<a
Vua:{  lul<a,
0, lul > a.

Hence |Vu,| < |Vu|a.e.x € Q and so Epy (ua) < Ep(u). It follows that it suffices to look for minimizers in the set
Us={uq,:ueU}.
Let u = ing Epx(v), and {u}2, C Uy be a minimizing sequence. Then Ep ) (1) — f. Hence

veUq

1 ,

— |Vuf¥dx < C, / u, — f)?dx < C.
/Q p(x)‘ kl .Q( k f)

By the W"! - Sobolev-Poincaré inequality, the embedding [*™ (Q)—L'(2) and the fact u, —w € W}'(Q), we get

/ [ PY dx = / [ POy |dx < @P ! / |ug|dx < c/ [ue — W] + [w|dx < c/ |V, — Vwldx + C < C/ |Vu|dx + C
Q Q Q Q Q Q

< c/ VP dx + C < c/ 1 Gu a4 c < c/ L\ uax+ c < C
e} Ja D* 2 P(X)

Together with the inequality

/ |V f¥dx < C,
Q

we obtain Qg (Uk) + Quu (Vi) < C, which implies {u};7, is uniformly bounded in W'?*(Q). Meanwhile, [, (u — f)*dx < C
results in the uniformly boundedness of {u};”, in L*(Q). Since W'*™(Q) N [*(Q) is a reflexive Banach space, there exists a
subsequence {uy, };*; C {w};,, and u € W'¥(Q) 0 [*(Q) such that

w, — uin WP (Q)n1*(Q).

Moreover, since {u;}:*, c U, we conclude that u € W'*™ 1 [*(Q). We assert next that, u —w e Wé"’o‘) NL*(Q). To see
this, note that for w € W% (Q) N L*(Q),u —w € W™ (Q) N L*(Q). Since W;"™(Q) nL*(Q) is a closed, linear subspace
of W'P™(Q) N L*(Q), it is weakly closed. Hence u —w € W3?™(Q) N L*(Q). Then by Lemma 2.4,

B (1) < Hminf Ey(ty) = .

Therefore, we conclude that u is a minimizer of E,,. The uniqueness follows from the strictly convexity of Ep,(u) in u.

In the proof of Theorem 2.2, we use W' — Sobolev-Poincaré inequality which is different from Theorem 2.1. In special
case with no fidelity term in the energy (called p(x)-Laplacian Dirichlet problem), the existence of minimizer has been
studied in [5,7].

Assume w € WP (Q) N L¥(Q), and f — w € Wy"™ (@) nL*(©2) which means f has fixed boundary value f|,, = Wl,. Let u
be the minimizer of problem (2.1). We calculate the corresponding Euler-Lagrange equation.

Taking @ € WP™ (@) as a test function, we have u + ep — w € W3 (Q) for each € > 0. Then
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{/ 1 \Vu+6V(/)|p(")dx+i/(u+e(/) —f)zdx}
€=0 p(x) 2 Jo

-1 Vu+€eVoe
= et 22 T 2 2 ~fed
{/Q|Vu+eVgo\ \Vu+eV(p|V(p+ (u+ep-HNoe x}

d d
de Eypy(u+€@) = de

=0

=0
_ / VU VUV + i — f)pdx =0
Q
We have that the minimizer of problem (2.1) satisfies the following equation with Dirichlet boundary condition:
div(|[VufY*vVu) — Au—f) =0, xeQ,
u=w. X € 0Q.

Similarly, the minimizer of problem (1.4) satisfies the following equation with Neumann boundary condition

A —Q, X € 0Q,

ON

{ div(|VuP®*Vu) — i(u—f) =0, x€Q,

where N denotes the unit outward normal of 9Q.

In [13], entropy solution for the p(x)-Laplace equation without fidelity term was studied. In a different perspective, we
study the associated flow corresponding to the Euler-Lagrange equation in this paper. In the following, we only study the
problem with Neumann boundary condition. Remark that Neumann or periodic boundary conditions are more natural for
image processing applications. However, the Dirichlet boundary conditions are a bit more interesting mathematically and all
of the same proofs hold (in a simplified manner) for the Neumann conditions. O

3. The associated heat flow to problem (1.4)

Using the steepest descent method, the associated heat flow to problem (1.4) is given by

U = div(|Vul’™ 2 Vu) — iu—f), xt)eQ", (3.1)
ou T

N =0, (x,t)ecoQ, (3.2)
u0) =f, xt)eQx{t=0} 33)

Firstly, we derive another definition of weak solution of problem (3.1)-(3.3). Denote
1 Y}
F(Vu,u,x) = — [VulP® + 2 u - f).
(Vi) = e (VP + 5 = )

Then (3.1) is equivalent to u, = —F (Vu, u,x), where F'(Vu, u,x) denotes the Gateaux derivative of F about u.
Suppose u be a classical solution of (3.1)-(3.3). For each » € [*(0, T; W'"™(Q) N [*(R)), multiplying (3.1) by »— u, and
then integrating over Q, we have that

/Qu[(v —u)dx = /Q—F’(Vm u,x)(v — u)dx.
From the convexity of F(Vu,u,x), we deduce that

/Quf(v —u)dx + Ep) (V) = Ep (). (3.4)
Integrating over [0,s] for any s € [0, T] yields

/ S / (v — wdxde + / By (0)dt > / By (W, (3.5)

On the other hand, if (3.5) holds, setting v = u + €¢ in (3.5) with ¢ € (5 (), we obtain

/ /u[6<pdxdt+/ Epp(u + €@)d /E

which implies [j [, ure@dxdt + [; Epx (u + €¢)dt attains its minimum at € = 0. Hence

4 </ /uteq)dde—/ Ep(x)(u+6(p)dt> =0,
=0 0 Q 0

de
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that is,

S p S p
/ / U<pdxdt+/ / F(Vu,u,x)@dxdt = 0.
0 Jo 0 Jo
Since ¢ is arbitrary, @ + F'(Vu,u,x) = 0. That is to say, if u satisfies (3.5), then u is a weak solution of (3.1) in the sense of
distribution. This motivates us to give the following definition.

Definition. A function u € [(0, T; W'"®(Q) n1*(Q)), with it € [*(Q7) is called a weak solution of Egs. (3.1)-(3.3) if u(0) = f,
and for all » € [2(0, T; W™ (Q) N [3(Q)), for all s € [0,T], (3.5) holds.

Let (&) = 5L:[¢P™, then the derivative is ¢, (¢) = [¢"®?¢. Setting

o0 =i (Vi + eZ)M

with 0 < € < 1. Then
¢

5 2-p(x)
(\/\é\ +62)

It is easy to see that ¢°(¢) is convex in ¢ and @€ — ¢ as € — 0.
To prove the existence of solution to (3.1)-(3.3), we first discuss the solution of the approximated problem

@58 =

U = eAu +div(eS(Vu)) — Au—f;), (x,t) e’ (3.6)
au

N=0 (D€ Q" 3.7
u0) =f;, (x,t)eQx{t=0}, (3.8)

where f; € C*(Q) has the following properties:

fi—fin Lz(Q): HfO'”L““(Q) < HfHL"(Q): o(Vfs) < o(Vf). (3.9)

Since 1 < p(x) < 2, for @(s) = 515", we have ¢'(s) = ;15 p(x)s"® ! = s?®~1 > 0(s > 0). Hence ¢ is monotonically increasing
function in s (s > 0). The convexity of ¢ yields

v AL 2 4 e? - 1 . b0 1 op-t P() *x)
0 (V) = s (VIVEF ) < SV + €7 < s (U 4 )

< 2rt <<p(Vfo-) +l%ep<*’) <2(@(Vf) +€). (3.10)

The existence of f; can be proved by the standard argument as in [10].

Lemma 3.1. The problem (3.6)-(3.8) has a unique weak solution uS, with u$e L*(0,T; W"P™(Q)nI1*(Q)) and 1§ e
12(0,T;L%(Q)) such that

/ i Pdxdt + sup /E|Vu§\2+(pf(Vu§)+£(u§—fa)2dx <2 /E\Vfé\zdx—s—(p(Vf)dx—H . (3.11)
0 Q 92 2 522

t>0
Proof. (3.6)-(3.8) is quasilinear parabolic equations of divergence type. Since it satisfies all necessary conditions which can

be verified by directly calculation, (3.6)-(3.8) has a unique weak solution u§ [9]. Then u§ satisfies (3.6). Multiplying (3.6) by u
and integrating on Q, we get

/ 2 = / e Ausdx + / S div(ef (Vus))dx — / (Ul — fy)dx.
Q Q Q Q
Then
;€|2 d € €12 € € 4 € \2 _
e g { [ 5vust + orcvup + 3 g - e} —o.

Integrating the above formula on (0,t),

s ~ )
/0 /Q|u§\2dxdt+{/Q;Vugf+(pf(Vu§)+j(u§—f(;)2dx}
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Therefore,

|u5| dudt + sup € IVue2 + of (VuS) + ( —f,)2dx EIVER + o (Vfy)dx b
2 )

Since 0 < € < 1, we get the conclusion. O

Lemma 3.2. Let f € W'*® N [*(Q), and u$ be the weak solution of the problem (3.6)-(3.8). Then
HUSHL*‘(QT) < Hf”L*(Q)- (3.12)

Proof. Let G be a truncation function of class C' such that G(t) = 0 on (—oo, 0], and G is strictly increasing in [0, 4+-oc), and
G <M where M is a constant. Let k = [|f[|,~,, and set v = G(u§ — k). Since u§ € W'?®(Q) nL*(Q), by the chain rule we get
ve WY (Q)nI1*(Q), and Vv = G (uf — k)Vug Multiplying (3.6) by » and integrating over Q yields

0= / uSG(us — k) dx+e/ |Vus*G (u k)dx+/ (pf(Vug)VugG’(ug—k)dx+i/(u§ —f5)G(u§ — k)dx. (3.13)
Q JQ

By the definition of ¢¢, [, pt(Vu$)VusG (u§ —k)dx > 0. It is obvious that 6[0|Vu5\2G’(u6 kydx = 0. If [, (u§—f;)
G(us — k)dx < 0, then we get u§ < [Ifsll;~ o) < Iflli~ = k. Otherwise, we have [,(u§ — f5)G(u§ — k)dx > 0. Hence (3.13) yields

/ G(US — k)dx < 0.
Q

Since 0 < G' < M we deduce that

d L
= '/Q(G(u(; ~ k))%dx < 0.

Therefore [,,(G(u$ — k))*dx is monotonically decreasing function about t and then
[ (Gt~ 7dx < [ (G5~ k)dxo = [ (605~ kydx=0
Q Q Q
So we have proved that u§ < k. Similarly, u§ > —k can be proved. O

Theorem 3.1 (existence and uniqueness). Suppose f € W'P®(Q)nL*(Q). Then (3.1)-(3.3) has a unique weak solution
u e L*(0, ;W™ (Q) N L™(Q)), with &1 € [*(Q").

Proof. First we fix § > 0 and pass to the limit € — 0. Let {u$} be the sequence of solution to (3.6)-(3.8). By (3.11) and (3.12),
we get that {u¢} has uniformly bounded L () norm about €, and {ii¢} has uniformly bounded L*(Q*) norm. Then there
exists a subsequence, also denoted by {uS}, and a function u; € L*(Q2), such that as € — 0,

uj — us; weakly * in L*(Q%), (3.14)
u$ — w weakly in L*(Q™). (3.15)

The same argument used in the proof of Lemma 3.1 [16] gives us that i1; = w,u;(0) = f;. Then we have iI; € L*(Q™).
Moreover, for all ¢ € L*(Q),

/S;( SCot X)dx = //Q (%,8)10( dxdsﬁ//g,)xs 04(s ()dxdt—/Q( s(t) —f5)p(x)dx (€ —0),

which implies that
uS(-, t) — us(-, t) weakly in L*(Q).

From (3.11), for each t > 0, {uS(-,t)} is a uniformly bounded sequence in W"!(Q). Then there exists a subsequence, also
denoted by {u§(-,t)}, such that
uS(-, t) — us(-, t) strongly in L'(Q). (3.16)

From (3.12), (3.14) and (3.16), we obtain

/QIUE(-,t)*Ua(-,t)\ZdX< HUE(-J)*Ua(-,t)IILx(Q)AIUE(-,t)*Ua(-,t)\dxé Clif =) /Q\US(-J)
—us(-, t)|dxdt - 0  (as € — 0).
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Therefore,
us(-,t) — us(-, t) strongly in L*(Q). (3.17)

For all v € [*((0, c0); H'(€)), multiplying (3.6) (where u is replaced by u$) by (v — u$) and using the convexity of ¢¢, we get
s . ¢ € 2 ¢ A 2 : € €2 € € Aoe 2
/ / (0 —uS) + S |VOP + 0 (Vo) + 2 (v f)dxdt > / / €V + o (V) + 2 (ut — fi2dxd.
o Jo 2 2 0 Jo2 2
From (3.15), (3.17) and the lower semi-continuity of ¢¢ we obtain
S ] S
/ / (0 — US) + @ (V) + 2 (v — f;)?dxdt > liminf / / O (V) + - (u — ) 2dd.
0 o) 2 e—0 0 Q 2
Letting € — 0, we obtain that

s 2 s i
/0 Lu(;(vfu(;)+(/)(V1/)+§(Uff5)2dxdt;/0 L(p(Vu(;)Jrj(usff(;)zdxdt (3.18)

holds for all v € [?(0, oo; H' ()). By approximation, (3.18) still holds for any v € L*((0, c0); W'*®(Q) N [*(Q)).
It remains to pass to the limit as § — 0. In (3.11) we let € — 0 to get that

/ / |i1;|*dxdt + sup {qo(Vua) +£(u(,- —ﬁ-)zdx} <C,
0 Q t>0 JQ 2

where C depends on f. Therefore, {u,} is uniformly bounded in L (0, co; W'*™(Q) N L?(Q)), and then uniformly bounded in
W'1(Q). We also have i’ is uniformly bounded in L?(Q*). Moreover, letting € — 0 in (3.12) yields

U5/l ey < “f”L”‘(Q)'

Hence {u;} is uniformly bounded in L*(Q*). By the same argument used in (3.14), (3.15) and (3.17), there exists a subse-
quence, also denoted by {us} and a function u e L*((0, c0); W'*®(Q) N L*(Q)),1t € L*(2*) such that as 6 — 0,

u; — u weakly «in L*(Q%), (3.19)
il; — 0t weakly in L?(Q%), (3.20)
us(-, t) — u(-, t) strongly in L*(Q) and uniformly for t. (3.21)

Using the lower semi-continuity of ¢ and (3.19)-(3.21), and letting 6 — 0 in (3.18), we conclude that for all
ve WY Q)N L*(Q)

/ / (v — wydxdt + / Ey (0)dt > / Eyuo (0)dt.
0 Q 0 0

By definition, u is the weak solution of problem (3.1)-(3.3).
Uniqueness follows directly from the following stability theorem by letting f; = f,. O

Theorem 3.2 (stability). Assume u; and u, are both weak solutions of (3.1)-(3.3) with initial values f,,f, € W™ (Q) N L*(Q).
Then for any t > 0,

[ur — U2~y < i = fall=(g)-

Proof. Set k = ||fi — fal|;~(o)- Define
v=u —(u—uy— k),
WIU2+(U1 *Uz*k)Jr’

where

u—uy—k, ifuy—uy—k=0,
0, otherwise.

(ulfusz)+={
Then

Vo — Vuy, up—uy <k, Yw — Vuy, up —uy <Kk,
Vi, w—u >k, Vur. up—up >

By the definition of weak solution of (3.1)-(3.3), for all t > 0, we have
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/ul(v u)+ @(Vo)+ ( — fi)2dxdt > /(p (Vup) + ( — fi)?dxdt,

(UZ —fz)zdxdt.

N\ ~

. )
/uz(w—u2)+(,0(VW) LW foYdxde > /(p (Vity) +
Q
Taking summation yields

/m(v W) + (W — 1) + ((V2) + (VW) + 5 (0~ i)’ + 5 (w—fy)dede

> [ (Vi) + (Vi) 5 (wr i) + 5 (0o — o e

By the definition of » and w, it is clear that
P(Vo)+ o(VW) = ¢(Vih) + ¢(Viy),

and

[ =R (2 = = (0= = W= odx = | () 0= 20) + (i~ W)t + w26

= /Q(ul —uy — k), (2uy = 2f; = 2ux + 2f, — 2(uy —up — k), )dx
/Zul—uz—k) (g —up—k)— (U —us — k), — (i — o —k))d

By the definition of k, we have f; — f, —k < 0.If (u; —u; — k), =0, then

/S;(lh —u—k), (U —uy—k)—(w—us—k), — (fi - ydx = 0.
If (uy —uy — k), >0, then

/Q(ul k) (Wt — k) — ( — 1y~ k), — (i —fo— K)

> /(u1 —uy — k), ((ug —uz — k) — (U —up — k))dx = 0.
Q

So we get
/ (0—Fi) + W —f))dx < / (s —fi)? + (s — fo))dlx
Q Q
Therefore,

/Q(ih(y — ) + (W — up))dx > 0.
By the definition of v and w, we get
/Q(m — 1) (u; —uy — k), dx <0,
that is,
d 2
E./Q\(m —uy — k), |[“dx < 0.
So [, |(ur —uy — k)+\2dx is monotonically decreasing function of t, then
[t ==k Pax < [ 1o~ 1), Pax(= ),
Therefore, u; — u, < k. Similarly we can prove u; —u, > -k 0O

Theorem 3.3 (long time behavior). Let f € W'*™(Q) N L*(Q). Then as t — oo, the weak solution u(x, t) to (3.1)(3.3) converges
strongly to the solution of the minimization problem (1.4) in L*(Q).

Proof. By the definition of weak solution (3.5), for all s > 0 and for all v(x) € W'*®(Q) N [*(Q), we have

/ /it(x,t)(v(x)—u(x,t))dxdt-i-/ Ep (v(x))dt > / Epo (u(x, t))dt
0 Je 0 0
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that is,

/(u(xs) —f(x)v(x dx——/ (x,5) — f*(x) dx+s/(va )dx+52/ (x))%dx

//(p(Vudxdt+2// — f2dxdt. (3.22)

Define
1 S
w(x,s) = — / u(x, t)dt.
S Jo
Since u € L*(0, oo; W™ (Q) N L*(Q)) for any s > 0, we have w(.,s) is uniformly bounded in W'**¥ (Q) and L**(2). Then there
exists a subsequence, also denoted by {w(x,s)}, and a function i € W'?®(Q) N L*(Q), such that
w(x,s) — @t in WP®(Q),
w(x,s) — @ in [*(Q).
Dividing (3.22) by s, then letting s — oo, we obtain
Epix)(v) = Epy (1)
for all v(x) € W™ (Q) N L*(Q). Hence, i is the solution to problem (1.4). O

(c) (d)

Fig. 1. Comparison of the proposed model and the ROF model. (a) The true image; (b) the noisy image; (c) the restoration result by the ROF model; and (d)
the restoration result by the proposed model.
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4. Numerical results

We consider dimension n = 2. Suppose the image size is N x N. Set 7 be the time step and h = 1 be the space step. Let
xi=ih, y;=jh, i,j=0,1,...,N, ty =nt,n=0,1,..., u; = u(x,y;, tn), ug = f(xi,¥;). Define
(Dyw);; = [uisrj — tij], (Dyu);; = +uijer — i,
|(Dat)y;| = /(D (ugg))? + (mIDy (135). D, (ug)])* + 0.001,
|(Dyt)yj| = /(D5 (i) + (m[D; (), Dy (uyy)))? +0.001,

where ma, b] = (SE14:siEnb) . min(|a|, |b|). Then the finite difference scheme of the heat flow (3.1)-(3.3) is given by
2

D} uk D} uk
k+1 _ ok - x - Yy gk _
utt=u +1:<DX <7|Dxuk|]g> +D, <7|Dyuk|1g Aut=f)],
uo =f,

where the subscripts i, j are omitted for simplicity. Remark that the Neumann boundary condition (3.2) is implemented by
extend the image matrix symmetrically. To illustrate that our model has the advantage of reducing the staircasing effect
while preserving edges, we run the ROF model as comparison. The numerical scheme of the ROF model is according to [12].

(c) ()

Fig. 2. Comparison of the proposed model and the ROF model. (a) A part of Lena image; (b) the noisy image; (c) the restoration result by the ROF model; and
(d) the restoration result by the proposed model.
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Fig. 3. Comparison of the proposed model and the ROF model. (a) The noisy image; (b) the restoration result by the ROF model; and (c) the restoration
result by the proposed model.

(b)

Fig. 4. Comparison of the proposed model and the ROF model. (a) Noisy MRI image of a heart; (b) the restoration result by the ROF model; and (c) the
restoration result by the proposed model.

In all the experiments in this paper, the time step is set as 0.05, the fidelity coefficient /1 is set as 0.01, k = 0.005, and
o = 0.5. The stopping criterion of both the ROF model and our model is the relative difference of the restored image should
satisfy the following inequality:

[t — u|l

4
e, <0

In Fig. 1, a typical piecewise smooth image is tested. Fig. 1(b) is the noisy version of Fig. 1(a). The restoration results by the
ROF model and the proposed model are showed in Fig. 1(c) and (d), respectively. We can see in both results that the edges in
the centerlines are preserved. However, in Fig. 1(c) the staircasing effect is obvious in the smooth regions, while in Fig. 1(d)
the staircasing effect is successfully reduced.

A part of Lena image is tested in Fig. 2. Fig. 2(b) is the noisy version of Fig. 2(a). Figs. 2(c) and (d) show the restoration
results by the ROF model and the proposed model, respectively. We can see that the proposed model recovers sharp edges
as effectively as the ROF model. Meanwhile, in the smooth regions such as the shoulder, the staircasing effect can be seen in
Fig. 2(c), while in Fig. 2(d) almost no staircasing effect occurs in these regions such that it seems more natural.

In Fig. 3, we test a character image with smooth background. Fig. 3(a) shows the noisy image. Figs. 3(b) and (c¢) show the
restoration results by the ROF model and the proposed model, respectively. We observe that in both results the edges of the
characters are preserved. Meanwhile, almost no staircasing effect appears when processed by the proposed model.

We test a medical image in Fig. 4. An MRI image of a heart with noise is showed in Fig. 4(a). Figs. 4(b) and (c) show the
restoration results by the ROF model and the proposed model, respectively. The staircasing effect is obvious on the surface of
the organ in Fig. 4(b), in contrast, almost no staircasing effect occurs in Fig. 4(c) where the organ surface is smooth.

5. Conclusion

In this paper, we have studied a variational exponent (1 < p(x) < 2) functional to recover images based on the models
(1.2) and (1.3). The significant difference between our model and (1.3) is that in our model (1.4) p(x) can approximate 1
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(but larger than 1) while in (1.3) p(x) will be equal to 1 in regions with large gradient. However, theoretically, the two models
are discussed in different spaces. (1.3) is studied in BV space while (1.4) is studied in variable exponent Sobolev space W'#%,

The case that includes p(x) = 1 is interesting. Some lemmas in Section 3 no longer hold any more. If 1 < p(x) < 2, other
kind of variable exponent space (not W'?®) should be introduced. This will be the future work.
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