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SUMMARY

A crucial aspect of spectral image analysis is the identification of the materials present in the object or
scene being imaged and to quantify their abundance in the mixture. An increasingly useful approach to
extracting such underlying structure is to employ image classification and object identification techniques
to compressively represent the original data cubes by a set of spatially orthogonal bases and a set of
spectral signatures. Owing to the increasing quantity of data usually encountered in hyperspectral data
sets, effective data compressive representation is an important consideration, and noise and blur can
present data analysis problems. In this paper, we develop image segmentation methods for hyperspectral
space object material identification. We also couple the segmentation with a hyperspectral image data
denoising/deblurring model and propose this method as an alternative to a tensor factorization methods
proposed recently for space object material identification. The model provides the segmentation result and
the restored image simultaneously. Numerical results show the effectiveness of our proposed combined
model in hyperspectral material identification. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hyperspectral remote sensing technology allows one to capture images using a range of spectra
from ultraviolet to visible to infrared. Multiple images of a scene or object are created using light
from different parts of the spectrum. These hyperspectral images can be used, for example, to
detect and identify objects at a distance, to identify surface minerals, objects and buildings from
space, and to enable space object identification (SOI) from the ground. In this particular study
within the domain of SOI, we concentrate on hyperspectral image deblurring, segmentation, and
object material identification.
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Three major objectives in processing hyperspectral image data of an object (target) are data
compressive representation, spectral signature identification of constituent materials, and deter-
mination of their corresponding fractional abundances. Note that a hyperspectral image can be
considered as a 3D tensor, e.g. [1]. Zhang et al. [2] have proposed a novel approach to processing
hyperspectral data (tensors) using nonnegative tensor factorization (NTF) for 3-D arrays, which
reduces a large tensor into three nonnegative factor matrices, whose Khatri—-Rao product approx-
imates the original tensor, see e.g. [3]. This approach preserves physical characteristics of the
data such as nonnegativity and is a natural extension of nonnegative least-squares approximate
nonnegative matrix factorization (NMF), see e.g. [4]. However, the use of NTF was only partially
successful in [2]. Hyperspectral data are typically noisy and suffer from both spatial and spectral
blurring, e.g. [5—8]. Those problems were also reported in [2]. Also, analyzing tensors is chal-
lenging. Algorithms fitting tensor models depend heavily upon the initial set-up, i.e. the number
of components and the initialization of the component matrices. See the NSF Workshop report by
Van Loan [1] for a discussion of tensor computations and research needed for these problems.

Here, we propose an alternative to the use of NTF for hyperspectral data analysis with space
object material identification applications. We apply a coupled segmentation and deblurring model
to the problem of hyperspectral material (sometimes called endmember) identification. This
approach is tested with data used in [2] for SOI applications. In Section 2, a coupled segmentation
and deblurring model is proposed, and the numerical implementation of the proposed method is
given in Section 3. We then describe the hyperspectral data used for our numerical tests and its
relationship to the SOI problem in Section 4. Numerical experiments are provided in Section 5,
and some comments and open problems are given in Section 6.

2. COUPLED SEGMENTATION AND DENOISING/DEBLURRING

For multi-mode data hypercubes, the enormity of direct data storage and processing tasks is often
too daunting to permit a reasonable direct computational approach. This is particularly true in the
context of computing information measures for highly multi-parametric statistical distributions,
and where the data are blurred and noisy across the spectral bands. A different and more practical
approach in this case is the one that stresses physics in the specific sense that the underlying
physical model is often based on a rather much smaller set of parameters. A powerful strategy in
handling what are naively large data sets is thus to devote considerable attention to the underlying
physical model and to identify the small set of parameters that can explain the underlying structure
of the otherwise intractable data volume. The viability of this approach is guaranteed very generally,
since physical problems of any interest very often admit a complete description in terms of a
relatively small set of parameters.

An increasingly useful approach to extracting such underlying structure is to employ image
segmentation and object identification techniques to compressively represent the original hyper-
spectral cubes by a set of spatially orthogonal bases and a set of spectral traces, i.e.

t9.()(:7yv}”)Q"X:)ul(x’y)fl(/l) (xv)’)GQ, (1)

where Q is the domain of the observed hyperspectral cubes, y;(x, y) is a binary support function
for the ith object and f;(4) is the spectral trace of the ith object. This is the simpler case of
assuming no overlapping between objects in the spatial dimensions, i.e. {¢;} are orthogonal, but
it can be extended to the mixing case by changing the range of y; from binary to the interval of
[0, 1].

Thus, we anticipate a decomposition of the data into a sum of elementary images, each corre-
sponding, e.g., to a specific material constituent of the surface of an object which can be expected
to be spatially sparse in our applications. For example, in hyperspectral imaging of satellites from
the ground, the y; could correspond to the solar panels that are localized to certain surface regions
and are thus sparse over the full 2D array and the vector f;(4) could correspond to a solar panel
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material spectral signature [2]. Variational PDE methods, e.g. the Chan-Vese model [9] and its
extensions [10], can be employed to segment out certain regions of a single image to identify ;.

However, from a practical standpoint hyperspectral data are generally noisy and blurred, espe-
cially in ground-based imaging through the atmosphere, see [5, 11, 12]. This situation can compli-
cate any attempt to segment and analyze the data, as was observed in [2]. We first describe a
denoising/deblurring model that will be used to preprocess the hyperspectral data along with
segmentation.

2.1. A fast denoising/deblurring model using total variation

Digital image restoration and reconstruction play an important part in numerous areas of applied
sciences such as medical and astronomical imaging, image and video coding. In our particular
application, we are concerned with the degradation effects of imaging through atmospheric turbu-
lence [13].

Assume that the observed gray scale image Ip:Q— R is blurred with a known point spread
function (psf) 4 and contaminated by some noise 7, that is

Io(x,y)=(h*xI)(x,y)+n(x,y). (2)

We assume that £ satisfies 0<h<<1 and fgh(x, y)dxdy=1. In order to recover the clean image
I from Iy, a total variation regularization with £, fit-to-data term deblurring model minimizes the
following energy functional:

E(I):/ |VI|dxdy+V/(h*l—lo)zdxd)’-
Q Q

The first term in the right-hand side is the total variation of /. Huang et al. [14] proposed to
introduce an auxiliary variable J, and to approximate the energy E(I) by

1
E(, J):/ |VJ|dxdy+—/(I—J)zdxdy—i-y/(h*I—Io)zdxdy.
Q 20 Jo Q

Then they solve the minimizer by an alternating minimization method: Fixing 7, J can be solved
by Chambolle’s [15] fast dual projection method; Fixing J, I can be solved in various ways, for
example using the FFT when £ is spatially invariant. The overall algorithm is faster than gradient
descent methods [14]. Here, 0 and y are fixed parameters defined by the user. The parameters can
be determined using the strategy studied in [16].

2.2. A fuzzy piecewise constant segmentation model

Image segmentation, an important problem in image analysis, is the task of partitioning a given
image into disjoint regions, such that the regions correspond to the objects in the image. There
are a wide variety of approaches to the segmentation problem. Based on the Mumford—Shah [17]
functional for segmentation, Chan and Vese [9] proposed a level set model for active contours to
detect objects whose boundaries are not necessarily defined by a gradient.

As in the Chan-Vese model as described in [9], we assume that the image can be approximated
by a piecewise constant function vazl ciy; where y; is the characteristic function of set €; and
¢; are constants, i.e.

Ix,y)~c; (x,y)e,

where {Q,-}fv= | is a partition of the image domain Q. Then the piecewise constant segmentation
problem becomes to recover the clean image I, c=(cy, ..., ¢;), and the partition from the observed
data Iy. According to (1), we determine €; and ¢; to match the Ath frequency image of the
hyperspectral tensors as follows:

fitd) (x,y)eQ; with y;(x,y)=1,

0 otherwise.

Cj =
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For convenience, we label the background to be one region or one material. In the following
discussion, we consider a segmentation and deblurring model for the A frequency image of the
hyperspectral cubes. In Section 4, the extension of the model to the whole hyperspectral tensor
with all frequencies will be considered.

Let 0Q; be the boundary of region ;. Let I'= Uf\’: 1 0Q; be the segmentation boundaries of the
entire image. The segmentation is usually given by minimizing the piecewise constant Mumford—
Shah energy functional

N
Ec,D=T1+Y 1| (I—c)*dxdy. (3)
i=1 Q;
In terms of characteristic functions y=(yy, ..., xy), where y; denotes the characteristic function
of region €;, the energy (3) can be rewritten as
N N
Ee.=2 | IVxldrdy+ 3 Q(I—c,-)2x,-dxdy. “)
i=1 i=1

In the last term, fQ |Vy;|dx dy equals the perimeter of 0€Q;. There is a scaling of factor 2, since
we add each boundary twice. For simplicity, we neglect it.

The binary-valued function y; gives a hard segmentation of Q. In the following, we use a fuzzy
membership function u;(x, y) to substitute for the hard membership function y; in (4). As a fuzzy
membership function, #; must satisfy the conditions:

N
() 0<u;<l and (i) Y wi=1. (5)
i=1

Then we get the constrained fuzzy piecewise constant segmentation model of minimizing energy
functional

N N
E(U,c):Z/ \Vuildxdy+ Yt | (I—c¢;)*ul dxdy, (6)
i=1JQ i=1 JQ
where p is a parameter to determine the fuzziness of segmentation and U =(uy,...,uy). We

remark that larger p implies more fuzziness, and in practice we set p=2.

For images without noise and/or blur, the fuzzy piecewise constant segmentation model generally
works quite well, e.g. [18, 19].
2.3. The combined model

Here we combine the denoising/deblurring model and the fuzzy piecewise constant segmentation
model together with p=2 and % is a known spatial invariant blurring operator. We then obtain a
coupled model for deblur and segmentation, which has to minimize

N
E(U,c, 1):/ |VI|dxdy+ Y |Vu,-|dxdy+%/(h*1—lo)2dxdy
Q Q

i=1
Nt 22
+> = | (I—ci)u;dxdy @)
i-z12Ja

subject to constraints (i) and (ii) in (5).
Assume that the observed image Ip e BV(Q)NL*°(Q) and a=essinfq Iy, f=esssupg Ip. Then
we aim to find the minimizer of E(U,c, ) in a restricted space

u; €eBV(Q),i =1: N, satisfies (i) and (ii), ce RV,
=3, c, D

1€BV(Q)NL®Q), a<I<p.

where the constraint o<<{/<f is natural.
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Theorem 2.1
For fixed parameters N, t, v, there exists a minimizer of the energy E in the restricted space .o7.

Proof
It is easy to derive from the Euler—Lagrange equation of energy E that

_Jo I(x, y)u?(x,y)dxdy
fQ ”%(X, y)dxdy

if [qu?(x,y)dxdy>0.If [ou?(x,y)dxdy=0 (i.e. ui(x,y)=0 ae. (x,y)€Q), we define ¢; =0.
For such case, the fuzzy membership function is not employed; the number N can be reduced
correspondingly.

Now, we can take I/ =o,u;=1/N,cj=o0,i=1:N, then E(U,c, I)=(y/2)fQ(ac—Io)2dxdy<+
oo. Together with the fact that £>0 in .o/, we deduce that the infimum of the energy must be
finite. To show the existence of a minimizer of the energy, we let (U", ¢, I") C ./ be a minimizing
sequence for energy (7), that is, E(U",c", I"")—inf E(U, ¢, I) as n— +o00. Then there exists a
constant M >0, such that

Ci

N
E(U'I,cn’[n):/ IVI"|dxdy+ Y |Vu?|dxdy+%/(h*1n_10)2dxdy
Q Q

i=1

N
+> E/(I" —c?)z(u?)zdxdng.
i=z12Jo
Then we have that each term of E(U",c", I"") is bounded, i.e.
/|v1”|dxdy<M, 3)
Q
[ 19utiaray <, ©)
Q
%/(h*l”—lo)zdxdy <M, (10)
Q
%/Q(I"—c;?)Z(u?)dedy <M. (1)

Since u] satisfies condition (i), ||L¢;’||L1(Q)=fQ u? dx dy<|Q|. Together with (9), we get {u]} is
uniformly bounded in BV(Q) for each i =1: N. By the compactness property of BV space, up to
a subsequence also denoted by {u!} after relabelling, there exists a function u} € BV(Q) such that

|
u! —>u} strongly in L' (Q),
n *
u; —u; ae. (x,y)eQ,
Vul! = Vu! in the sense of measure.

Then by the lower semicontinuity of total variation,
/ [Vu}|dxdy< lim inf/ [Vu?|dxdy. (12)
Q n—-oo Q

Meanwhile since u satisfies constraints (i) and (ii), by the convergence result, u} also satisfies (i)
and (ii).
If ¢! is given by

. Jol@?)?dxdy
o Jo?dxdy

Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
DOIL: 10.1002/nla



158 F. LI, M. K. NG AND R. J. PLEMMONS

then we have a<c!<f; Otherwise, ¢ =0. Hence, we get
min(a, 0)<c! <p.

From the boundedness of the sequence {c}'}, we can extract a subsequence, also denoted by {c!'},
and a constant ¢} such that

¢! — ¢} uniformly.

Since ul — u7, a.e. (x,y)€Q and ¢! — ¢}, the Fatou Lemma gives
/Q(I—c;‘)z(u?‘)zdx dygnli)n;oinf/Q(I — M) dxdy. (13)

The inequality (8) says that the total variation of I" is uniformly bounded. Since a<I"<f5, we
have that the L' norm of I” is uniformly bounded. Then /" is uniformly bounded in BV(Q), and
thus there exists a subsequence {/"} and a function I* € BV(Q) and a<I*<f such that

I"— I* strongly in L'(Q),
I"=T* ae. (x,y)eQ,
VI" ~VI* in the sense of measure.

Then by the semi-continuity of total variation and L? norm, we obtain

/|v1*|dxdy<uminf/ |VI"|dxdy, (14)
Q n—0o0 Q
/(h*I*—IO)dedyguminf/ (h*I" — Ip)*dx dy. (15)
Q n—oo Q

Combining inequalities (12)—(15) for all i, on a suitable subsequence, we have established that

E(U*, c*, I")<liminf E(U", ", I")=inf E(U, ¢, I) (16)
n—oo

and hence (U*, ¢*, I'*) must be a minimizer. This completes the proof. O

3. THE NUMERICAL METHOD

For efficiency, we choose to follow [14, 19, 20] and use Chambolle’s dual projection algorithm
[15]. Adding auxiliary variables V = (v, ..., vy) and J, we approximate E by

N 1 1 N
E.(I.J.U. V,c):/ IV dxt S |Vv,-|dxdy+—/(1—J)2dxdy+—Z (vi—u;)? dx dy
0 i=1J0 2n Jo 2025 Ja

N
+Z/(h*1—10)2dxdy+2 E/(I—ci)zu,-zdxdy (17)
2 Q i=12 Q

where 0 and 7 are chosen small enough so that  and J, u; and v; are almost identical. Since (17)
is componentwise convex in each variable I, J, U, V, ¢, we can minimize it by an alternating
method as follows.

3.1. Solve for the vector of constants c

Taking the derivative of E, with respect to ¢; and setting the result to zero, we obtain
 JolG, y)ui(x, y)dxdy

1 .

(18)

Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
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3.2. Solve for the auxiliary variable V

We solve v; by minimizing

1
/|Vvi|dxdy+—/(vi—ui)zdxdy.
Q 20 Jo

This problem can be efficiently solved by a fast duality projection algorithm. The solution is
given by

vi=u;—0divp;, i=1:N, (19)
where the vector p; can be solved by a fixed point method: initializing p? =0 and iterating

nr1_ PP H@Vdivpl —u;i/0)
! 1+ ¢|V(div p!' —u; /0)]

with d)é% to ensure convergence. See [15] for more details.

3.3. Solve for the membership function U

We consider the minimization problem

N N
min 5 [ dildrdy+— 5 [ wi—up?dxdy (20)
U 2igJao 205 Ja

subject to constraints (i) and (ii), where d;=(/ —¢;)? refers to the difference between the
denoised/deblurred image and the ith spectral object. In order to give the location of the ith
spectral object, the term ul.2 is used with d; in the calculation. Since the objective function is
strictly convex and the feasible region is convex, there exists a unique global minimizer U* of
problem (20). However, it is hard to get the exact solution [19]. In order to give an approximate
numerical solution, first we do not consider the inequality constraints (i). By adding pointwise
Lagrange multipliers d(x) to handle the equality constraints (i), we need to minimize

N 1 N N
EZ diu,-zdxdy—i-—z (vi—ui)zdxdy+/5(x)<2ui—1> dxdy.
2:5J)a 2021 Ja Q i=1
The optimal condition is

di (0)u;(x)+ %(ui(x) —v;(x))+0(x)=0.

Then the closed-form solution of u; is given by

Vi — 0o
U= .
"1 ~+16d;
Using the constraints Zf\’: (ui =1, we have
% Vi — 0o 1
i=1 1+T6d, v
then
Y 1
1= 1 .
5= o @1)
0N
Zl_l 1416d;
Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
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Substituting J into the formula of u; gives

N vj
. —1
_ v; Zj:ll+’l,'9dj
A 0d; R
j:11+’59dj

Second, we can apply the inequality constraints by projecting u; onto [0, 1],
i; :=min{max{u;, 0}, 1}. (22)

Finally, 4; gives our approximate numerical solution.

3.4. Solve for the auxiliary variable J

J can be solved by minimizing

1
/|VJ|dxdy+—/(I—])2dxdy
Q 2nJo

Using the fast dual projection method as in Section 3.2, the solution is given by
J=1—ndivp, (23)

where the vector p can be determined by a fixed point method. See Section 3.2 for details.

3.5. Solve for 1

Taking the derivative of E, with respect to / and setting the result to zero, we obtain

=—(I—=J)+yh™ x(h*xI—1Ip)+1 Y (I —c;j)u; =0.
ol 1 i=1

Then I can be determined by

=71 (ﬁmwn%m*o%(mmn Zfil(c,-ﬁ(un%) o

L+ F (hy o F (h)+tn SN (F (u;)?)

where % denotes the Fourier transform.

We remark that in the deblurring process, the parameter 5 is chosen to be a sequence that goes
to zero. In fact, we choose the initial value of # to 0.1 and then decrease it by #=7/1.2 during
the evolution. The factor 1.2 is chosen following [16] in which it is got by trail and error when
considering the deblurred image quality. The evolution of I, J is stopped when ny<le—8.

3.6. Algorithm details
The algorithm for minimizing E, in (17) can be summarized in the following six steps:

e Step I. Initialize the membership functions u; such that the constraints (i) and (ii) are both
satisfied. Set I =1y, J=1, vi=u;, n=0.1.
e Step 2. Calculate ¢; by formula (18).
e Step 3. Update v; by formula (19).
e Step 4. Update the membership functions u; using formula (22).
Set n=n/1.2.
e Step 5. Update J by formula (23).
e Step 6. Update I by formula (24).
If n<le—8, end steps 5 and 6.

Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
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Repeat Steps 2—6 until termination. The termination criterion is as follows:

A — ki<,

where ckz(cll‘, ...,c’l‘v) is the vector of intensity values of N spectral objects in the kth
iteration and || - || denotes the Euclidean distance and ¢ is a small positive number defined by
the user.

3.7. Extending the algorithm to hyperspectral image data

In this subsection, we present the extension of our algorithm to three-dimensional tensors, specif-
ically hyperspectral data cubes. Let I(x,y, 1):Qx # — R denote the tensor image where x and
y denote spatial variables and / is the spectral variable. In the discrete form, we can view [
as a vector-valued image as follows: I =(Iy, ..., I;;):QQ— R™. Here m is the number of spectral
frequencies (wavelengths in spectral terminology) to be considered. Then the piecewise constant
image model changes to

li(x,y)~cij, j=1:m (x,y)eQ)

where {Qi}fv: | is a partition of the image domain Q, and ¢; =(c;1, ..., ¢in) is a spectral vector of
the ith object (or the spectrum of the ith object). Then we can formulate a matrix C ={c;;], which
denotes the spectral traces of all the segmented objects in the hyperspectral data cube. Note that
these spectral traces, sometimes called endmembers, are determined here without matching with
a spectral library as is often used, e.g. [21].

Similarly, consider the matrix U =(uy,...,uy). The rows u;(x,y) of U represent the hard
membership functions y; in (4), and must satisfy (5).

Denote the observed hyperspectral tensor by Ip. We combine the denoising/deblurring model
and the fuzzy piecewise constant segmentation model together with p =2, and consider a coupled
model for denoising/deblurring and segmentation, which has to minimize

EWU,C,I)= Z |v1 |dxdy+2 |Vui|dxdy+%/(h*I—Io)dedy
i=1JQ Q

2/ Z(Ij—c,-j)zul-zdxdy, (25)
i=1 =1

subject to constraints (i) and (ii) in (5). Here d;j=(J; —cij)2 refers to the the difference in the jth
spectral band between the denoised/deblurred tensor image and the ith spectral object. We can set
the difference between the denoised/deblurred tensor image and the ith spectral object to be the
average of the m spectral bands:

diy+---+dim
—

di =
In order to give the location of the ith spectral object, the term ulz is used with d; in the calculation.
The algorithm in the previous subsection can now be employed to the hyperspectral tensor case.
For example, it is easy to obtain the new formulas for the components of the matrix C, i.e.

fQ I; ulz dxdy

Joui dxdy
Then the formulas for [;, J; are similar to I, J in the grayscale image case. The unknowns can
be updated similarly according to the procedures in Algorithm 1.

Here we would like to remark that similarly to a tensor decomposition of I, we can also interpret
our decomposition of I by using the compressive representation matrices U and C as follows:

Cij=

N
I(x,y, )= ui(x,y)c; VY(x,y) and 1<j<m.

i=1

Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
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162 F. LI, M. K. NG AND R. J. PLEMMONS

Figure 1. The original simulated image of the Hubble Space Telescope [11], representative of the data
collected by the Maui ASIS system.

Bolts Copper Striasping Hubble Honeycomb Side Hubble Honeycomb Top
1 1 1 / 1 /\/,-J\,L
09 : 08
0.3 o
05 0.8 06
Ha 07 0.4
0.4 0 0.2
0 50 100 0 50 100 0 50 100 0 a0 100
. Hubble Aluminum i Hubble Greeq Glue § Solar Cell g Black Rubber Edge
0.8
05 05 05
06 /
0 0 ] 0.4
0 50 100 0 50 100 0 50 100 u} 50 100

Figure 2. Spectral signatures of eight materials assigned to simulated Hubble Space Telescope model.

Figure 3. Materials assigned to pixels in Hubble Satellite Telescope image.

4. HYPERSPECTRAL DATA SET SIMULATING SPACE OBSERVATIONS

For safety and other considerations in space, nonresolved space object characterization is an
important component of space situational awareness (SSA). The key problem in nonresolved space
object characterization is to use spectral reflectance data to gain knowledge regarding the physical
properties (e.g. function, size, type, status change) of space objects that cannot be spatially resolved
with normal panchromatic telescope technology. Such objects may include geosynchronous

Copyright © 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:153-173
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Table 1. Materials, colors and fractional abundances used for the Hubble satellite simulation.

Material Color Fractional abundance (%)
Bolts Red 3
Copper stripping Cyan 13
Hubble honeycomb side Blue 3
Hubble honeycomb top White 4
Hubble aluminum Light gray 19
Hubble green glue Dark gray 12
Solar cell Gold 37
Black rubber edge Dark gray 8

Figure 4. Band 1 of the hyperspectral tensor image: (a) the original clean image; (b) image with

noise; (c) image with blur; (d) image with blur and noise; (e) deblurred image for (c) with our fast

denoising/deblurring algorithm; (f) deblurred image for (d) with our fast denoising/deblurring algorithm;

(g) deblurred image with coupled segmentation and deblurring algorithm for (c); and (h) deblurred image
with coupled segmentation and deblurring algorithm for (d).

satellites, rocket bodies, platforms, space debris or nano-satellites. Spectral reflectance data of a
space object can be gathered using ground-based spectrometers, such as the SPICA system, see
[22-24], located on the 1.6-m Gemini telescope and the ASIS system, see [5, 11, 12], located on
the 3.67-m telescope at the Maui Space Surveillance Complex (MSSC), and contains essential
information regarding the makeup or types of materials comprising the object. Different materials,
such as aluminum, mylar, paint, plastics and solar cell, possess fairly unique characteristic
wavelength-dependent absorption features, or spectral signatures, which mix together in the
spectral reflectance measurement of an object.

Spectral unmixing is a problem that originated within the hyperspectral imaging community and
several computational methods to solve it have been proposed over the last few years. A thorough
study and comparison of various computational methods for endmember or spectral signature
computation, in the related context of hyperspectral unmixing, can be found in the work of Plaza
et al. [25]. An information-theoretic approach has been provided by Wang and Chang [8].

In an earlier project on spectral data analysis for SOI, some of the authors have employed NMF
algorithms for unmixing of spectral reflectance data from a single pixel imaged by the SPICA
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(h)

Figure 5. Segmentation of the clean tensor image: (a) the segmentation result and (b)—(j) the
membership functions u; to ug.

spectrometer at MCSS to find endmember candidates. In that work, regularized inverse problem
methods for determining corresponding fractional abundances were developed [23, 24].

A new spectral imaging sensor, capable of collecting hyperspectral images of space objects,
has been installed on the 3.67-m Advanced Electrocal-Optical System (AEOS) at the MSSC. The
AEOS Spectral Imaging Sensor (ASIS) is used to collect adaptive optics-compensated spectral
images of astronomical objects and satellites. In a series of papers, Blake et al. [5, 11, 12] have
developed model-based spectral image deconvolution methods that can simultaneously remove
some of the spatial and imaging system-caused spectral blurring introduced by the ASIS sensor.
See Figure 1 for a simulated hyperspectral image of the Hubble Space Telescope from [11], similar
to that collected by ASIS.
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Figure 6. (The clean tensor image) The original material spectral signatures: red and -. and

the estimated spectral signatures: blue and — : (a) bolts; (b) copper stripping; (c) Hubble

honeycomb side; (d) Hubble honeycomb top; (e) Hubble aluminum; (f) Hubble green glue;
(g) solar cell; and (h) black rubber edge.

For our numerical tests, we use the data developed by Zhang et al. in [2], where the authors
constructed a data set of simulated spectral data using a 3-D model of the Hubble Space Telescope
and an NASA library of material spectral signatures [26]. These are lab-measured reflectance ratios
obtained by comparing the measured reflectance of each material to a known reflectance of a white
reference. The 3-D model was discretized into a 128 x 128 array of pixels for which a specific
mixture of eight materials was assigned based on orientation of the Hubble telescope. Figure 2
shows the spectral signatures of these materials. The signatures cover a band of spectrum from
0.4 to 2.5 um for 100 evenly distributed sampling points, leading to a hyperspectral data cube, or
3D tensor, 7 (, of size 128 x 128 x 100.

Three other hyperspectral (3D tensor) data sets, 7 |, 5, and 7 3, were then constructed from
the 7 ¢ by considering: (i) spatial blur (Gaussian psf with standard deviation of 2 pixels), (ii)
noise (independent Gaussian and signal-dependent Poisson noise associated with the light detection
process) and (iii) a mixture of blur and noise. We simulate the practical situations of observing
hyperspectral data in a simple way, i.e. to simulate the optical blurring with a Gaussian PSF and
the various noises present in the atmosphere and in the imaging system with a noise model. These
simplifications can easily be replaced by for example, more advanced turbulence models, for future
studies. We adopt a widely used noise model [27] for modifying our tensor .7 to T, specified by

- 1 2
tijk=tijk+n§jl)c\/tijk+n§j/>(, (26)
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(a)

(h)

Figure 7. Segmentation of the noisy tensor image using the coupled segmentation and denoising/deblurring
algorithm; (a) the segmentation result and (b)—(j) the membership functions u; to ug.

where nV) e N(0, ¢1) and n® € N(0, 0»). Here we set ¢ =0.05 and o5 =0.005.
As an illustration of original material signatures assigned to each image pixel, we render an
image of Hubble Space Telescope, Figure 3, using the color map defined in Table I.

5. EXPERIMENTAL RESULTS

We test our algorithm on the four hyperspectral tensor images with size 128 x 128 x 100: the
original clear image, the noisy image, the blurred image, the blurred and noisy image. In the first
row of Figure 4, the first band of the tensor image is shown. The second row shows the deblurred
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Figure 8. (The noisy tensor image) The original material spectral signatures: red and -. and

the estimated spectral signatures: blue and — : (a) bolts; (b) copper stripping; (c) Hubble

honeycomb side; (d) Hubble honeycomb top; (¢) Hubble aluminum; (f) Hubble green glue;
(g) solar cell; and (h) black rubber edge.

image using the fast denoising/deblurring model and our coupled model. It is clear that our coupled
model has a similar performance as the denoising/deblurring model in the aspect of deblurring.
In Figures 5-12, we test the four tensor images. We set N =9 and give the segmentation results
and the nine membership functions (including the background) in Figures 5, 7, 9 and 11. For
instance, in Figure 5(a), the segmentation result refers to different regions based on the matrix U.
In Figures 5(b)—(j), we show the values of the membership functions u; except the background.
When the pixel intensity is white in the figures, this indicates that this pixel belongs to a particular
region in an image. Similarly, when the pixel intensity is black in the figures, this indicates that
this pixel does not belong to the region formed. There may be some gray pixel intensities, which
indicates that the pixel may or may not belong to the segmented region. As is usual, we choose
the maximal value among all the membership functions to decide to which region this pixel
belongs.

In Figures 6, 8, 10 and 12, we show the original spectral signatures and the estimated spectral
signatures for the membership functions. In these figures, the values of ¢;; are shown with respect
to region i of an image. In the clean and blurred tensor images, we find in Figures 6 and 10 that
the estimated spectral signatures for Bolts and Black Rubber Edge are not matched well with the
original spectral signatures. The reason is that they are the smaller and thinner parts: they get
mixed with surrounding materials, which make them difficult to extract. However, the proposed
method estimates the other materials very well.
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Figure 9. Segmentation of the blurred tensor image with the coupled segmentation and denoising/deblurring
algorithm: (a) the segmentation result and (b)—(j) the membership functions u to ug.

In the noisy image, the estimated spectral vectors are matched with the original spectral vectors
except the Black Rubber Edge, see Figure 8. In the blurred and noisy tensor image, there are three
materials (Bolts, Honeycomb Side and Black Rubber Edge) that are not matched very well, but the
estimated spectral signatures of the other materials are quite good. We observe in these figures that
there are some channels of the spectral signatures (Copper Stripping, Hubble Honeycomb Top,
Hubble Aluminum, Hubble Green Glue and Solar Cell) that are estimated consistently well in the
four situations: the clear image, the denoised image, the deblurred image and the deblurred and
denoised image.

Table IT demonstrates the computational times and the iterations of the proposed algorithm with
respect to the clean tensor image, the noisy tensor image, the blurred tensor image, the blurred
and noisy tensor image, respectively. It shows that our algorithm is quite efficient.
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Figure 10. (The blurred tensor image) The original material spectral signatures: red and -. and the

estimated spectral signatures: blue and — : (a) bolts; (b) copper stripping; (c) Hubble honeycomb

side; (d) Hubble honeycomb top; (e) Hubble aluminum; (f) Hubble green glue; (g) solar cell;
and (h) black rubber edge.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a combined variational image restoration and segmentation model
for hyperspectral space object unsupervised material identification in the presence of noise and
blur. Mathematically, the existence of a solution to the proposed energy functional minimization
is proved in a restricted space. Numerically, the model is solved by a convergent alternating
minimization method. We add new variables in the energy functional so that two of the subproblems
can be solved by fast dual projection methods. The model provides the segmentation result and the
restored image simultaneously. Numerical results show that our proposed method is a promising
approach to hyperspectral material identification associated with SOL.

Although experimentally the combined algorithm is fast and gives quite good results, the theo-
retical proof of the convergence of the algorithm is important. To improve the solution for the
smaller and thinner parts, one possible way is to put more weights on these parts. These will be
studied in future work.

In future work, comparisons of our variational method will be made with the recent development
of multilevel iterative methods for deblurring, denoising and segmentation by Morigi et al. [28].
It will be interesting to compare the overall effectiveness and computational efforts of these related
approaches, using an extension of their method to hyperspectral data.

Another, rather different, approach to obtaining compressive representation of hyperspectral
data has been recently investigated by Gillis and Plemmons [29], who propose the use of matrix
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()]

Figure 11. Segmentation of the blurred and noisy tensor image with the coupled
segmentation and denoising/deblurring algorithm: (a) the segmentation result and
(b)—(j) the membership functions u; to uo.

and tensor factorization methods in the spirit of PCA. NMF and its variants have recently been
successfully used as dimensionality reduction techniques for identification of the materials present
in hyperspectral images. In their paper, the authors present a new variant of NMF called nonnegative
matrix underapproximation (NMU), based on the introduction of underapproximation constraints
which enables one to extract features in a recursive way, like PCA, but preserving nonnegativity.
These additional constraints appear to make NMU particularly well-suited to achieve a parts-
based and sparse representation of the data, enabling it to recover the constitutive elements in
hyperspectral data. A comparison between our methods proposed here and the methods in [29]
in terms of compressive representation capabilities on a variety of hyperspectral data cubes is
given here.
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Figure 12. (The blurred and noisy tensor image) The original material spectral signatures: red and
-. and the estimated spectral signatures: blue and — : (a) bolts; (b) copper stripping; (c) Hubble
honeycomb side; (d) Hubble honeycomb top; (e) Hubble aluminum; (f) Hubble green glue; (g)
solar cell; and (h) black rubber edge.

Table II. The computational cost of the proposed algorithm.

Tensor image Iterations Computational time (s)
Clean 27 22.3
Noisy 38 35.5
Blurred 64 126.9
Blurred and noisy 48 117.0

Future work also includes refinement of our combined deblurring, denoising and segmentation
model to include supervised learning (classification) capabilities. We are interested in applying our
method to analyze remote sensing hyperspectral data obtained from airborne imagery for studying
ecological conditions and changes, as the work of Goodwin et al. [30] and the work of Saatchi
et al. [31].

Testing will also be made on geospatial hyperspectral data obtained from the Army
Geospatial Center. This will include the HYDICE data cubes Urban and Terrain,* considered
recently by Guo [21].

¥ Available at hitp:/fwww.agc.army.mil/hypercube/.
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