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With the increasing availability of multisource image data from Earth observation satel-
lites, image fusion, a technique that produces a single image which preserves major
salient features from a set of different inputs, has become an important tool in the field
of remote sensing since usually the complete information cannot be obtained by a single
sensor. In this article, we develop a new pixel-based variational model for image fusion
using gradient features. The basic assumption is that the fused image should have a
gradient that is close to the most salient gradient in the multisource inputs. Meanwhile,
we integrate the inputs with the average quadratic local dispersion measure for the pur-
pose of uniform and natural perception. Furthermore, we introduce a split Bregman
algorithm to implement the proposed functional more effectively. To verify the effect
of the proposed method, we visually and quantitatively compare it with the conven-
tional image fusion schemes, such as the Laplacian pyramid, morphological pyramid,
and geometry-based enhancement fusion methods. The results demonstrate the effec-
tiveness and stability of the proposed method in terms of the related fusion evaluation
benchmarks. In particular, the computation efficiency of the proposed method compared
with other variational methods also shows that our method is remarkable.

1. Introduction

During the past two decades, with the increasing availability of multisource image data
from Earth observation satellites, various imaging sensors have been developed (see Pohl
and Genderen 1998; Stathaki 2008). Many image processing tasks, such as image segmen-
tation, feature extraction, and pattern recognition, need as much information of multisource
data as possible, while a single sensor may not meet the requirement. Therefore, it is
meaningful to integrate different data, which describe the same scene but contain differ-
ent features, into a new single image that contains all relevant information of the original
image set. Multisource image fusion, as a vital technology, can deal with this merging task.

Multisource image fusion is a subarea of a more general topic of data fusion (see Cvejic,
Seppanen, and Godsill 2009). It has been a mature and promising field of research in image
processing and remote sensing. It provides an effective method to enhance performance
for many tasks by combining information from a series of imaging sensors with differ-
ent modalities. There are many advantages for multisource image fusion: extended range,
increased confidence, decreased uncertainty, improved reliability, and robustness of the
system performance (see Cvejic, Seppanen, and Godsill 2009).
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In the last decades, many methods and software tools for multisource image fusion have
been proposed. According to the different levels of fusion, the existing fusion methods
can be roughly divided into three categories: pixel-level fusion, feature-level fusion, and
decision-level fusion (see Varshney 1997). In pixel-level fusion, original sensor observa-
tions from each sensor are combined directly. In feature-level fusion, features are extracted
from observations and are then fused. In decision-level fusion, each sensor makes deci-
sions on its own data first, and these decisions are then combined to produce the final
result. Since the results of feature-level and decision-level fusion are less accurate due to
the loss of information (see Varshney 1997), we will focus on pixel-level fusion.

Since the aim of image fusion is to integrate the fundamental information of orig-
inal data into a single complete image, the basic assumption is that this fundamental
information is the prominent features and is related to some easily expressed measures,
such as image gradient, high-frequency components of a Laplacian pyramid (LP), and
the coefficients of wavelet transform (see Zheng et al. 2007). In order to extract promi-
nent features efficiently, many effective methods have been developed during the past few
decades. These existing methods include the LP (Burt and Adelson 1983), filter-subtract-
decimate pyramid (FSDP) (Anderson 1987), gradient pyramid (GP) (Burt and Kolczynski
1993), discrete wavelet transform (DWT) with Daubechies Spline (DBSS(2,2)) wavelet
(DWTD) (Mallat 1989, Ranchin and Wald 1993), shift invariant DWT (SIDWT) with
Haar wavelet (Rockinger 1997), and morphological pyramid (MP) (Laporterie and Flouzat
2003).

Recently, the variational method has been widely studied in image processing. The aim
of the variational method is to build an energy functional for a certain problem whose
minimum is related to the desired result. Compared with other schemes, the variational
method has remarkable advantages in both theory and implementation (see Chan, Shen, and
Vese 2003). For more information on the variational method, one may refer to Chan, Shen,
and Vese (2003), Sapiro (2001), Aubert and Kornprobst (2009), and references therein.

As a variational method, the geometry-based enhancement fusion (GBEF) model (Piella
2009) uses the structure tensor to describe the geometry of all original images. First, it
obtains the target structure tensor with geometry-based merging. Then, in order to obtain
a more natural and sharp appearance, it performs a variational approach that is a combi-
nation of geometry merging, and intensity correction as well as perceptual local contrast
enhancement.

In this article, we propose a variational method based on the gradient features for
multisource image fusion. The gradient feature method used here was developed by Piella
(2009) and Dizenzo (1986). The main idea is that the fused image should have a gra-
dient that approximates the most salient gradient obtained from the multisource original
images. At the same time, to make the fused image perceptually more uniform and nat-
ural, we thus propose to combine the inputs with the average quadratic local dispersion
measure. In particular, the dispersion approach is based on the perceptual colour correction
technique proposed by Bertalmio et al. (2007). Furthermore, to tackle the l1-norm more
efficiently, we perform a split Bregman algorithm to solve the proposed model. Note that
our method is inspired by the GBEF technique. Compared with GBEF, our contribution lies
on (1) a complicated term, i.e. the perceptual contrast enhancement term, is removed in our
algorithm, (2) the l1-norm is used in our method, and (3) a fast algorithm using the split
Bregman is adopted to implement our algorithm.
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2. The proposed fusion method

The aim of the proposed method is to obtain a high-quality image by integrating the infor-
mation of the original inputs. Compared with the source images, the fused result should be
more informative which is more suitable for vision and applications. Particularly, we can
use the visually salient features, such as intensity change, texture, and contour, to measure
the information of an image. Since the intensity change is much easier to capture from
an image, many methods turn to use it as the feature and merge the feature into the fused
image.

2.1. Merging of gradient features

We first introduce some notations that will be used later. Let u : ! → [0, 1] be a greyscale
image, where ! ∈ R represents the rectangle image domain. For a pixel x = (x1, x2) ∈ !,
u(x) is the intensity at x.

For a greyscale image u, the intensity change is usually expressed by the measure of the

gradient ∇u =
(

∂u
∂x1

, ∂u
∂x2

)T
. Therefore, |∇u| gives the change size, while ∇u

|∇u| is the direction
of the change, where | · | is the length of a vector.

For the purpose of fusion, we should obtain the gradients of source images by an appro-
priate method and combine the gradients into a target gradient g. Then, we can obtain
the fused image whose gradient ∇u is very similar to g. The essential question is how to
integrate the gradients. Piella (2009) uses a geometry-based merging method to achieve
this aim. However, this method is relatively complicated with low computation efficiency.
A straightforward and effective idea is to composite the gradients of all original images
un : ! → [0, 1], n = 1, . . ., N with the linear method, i.e. g = ∑N

n=1 wn∇un, where wn is a
weight of ∇un.

A variety of methods are performed to obtain wn. We use the following equation to
produce a more accurate fused image:

wn = |∇un|∑N
i=1 |∇ui|

. (1)

After obtaining the target gradient g, we then construct a single image, i.e. the fused
image, whose gradient is similar to g. Many methods (e.g. Piella 2009) attempt to minimize
the quadratic dispersion measure,

Ql2 =
∫

!

|∇u(x) − g(x)|2dx. (2)

An alternative option is to use the l1 norm. As is known, the l1 norm is a suitable
metric that leads to an l1-regularized problem, which is common to imaging science. The
remarkable advantages of the l1 norm are that it can achieve an effective result and in turn
allows some fast algorithms, such as the primal-dual algorithm (see Chambolle and Pock
2011), augmented Lagrangian method (see Tai and Wu 2009), and split Bregman iteration
(see Goldstein and Osher 2009). We try to use the following l1 formula in proposed method:

Ql1 =
∫

!

|∇u(x) − g(x)|dx. (3)
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The fused image of model (3) may exceed the range [0, 1], so we should rescale the
result by adding a range constraint u(x) ∈ [0, 1].

2.2. Proposed variational functional

For N original input images un : ! → [0, 1], n = 1, . . ., N , we aim to produce a composite
image u : ! → [0, 1] which is perceptually uniform and natural while keeping the local
salient information from all inputs. For this purpose, we combine the average quadratic
local dispersion measure (see Bertalmio et al. 2007) with our dispersion measure in (3).
The new functional is shown as follows:

E = Q11 + D, (4)

where D =
∫ ∫

!
ω (x, y)(u( y) − uω (x))2dxdy, ω (x, y) is a symmetric weight for all x, y ∈

! with
∫
!

ω (x, y)dy = 1 for all x ∈ !. uω (x) is a local average that has two choices (see
Bertalmio et al. 2007).

• To make the fused image perceptually more uniform, we use the ‘grey world’ (GW)
assumption (see Buchsbaum 1980), i.e.

uω (x) = 1
2

. (5)

This leads to

D1 =
∫

!

(
u(x) − 1

2

) 2

dx. (6)

• For a given image u0 that we desire to enhance, another choice of uω (x) is

uω (x) =
∫

!

ω (x, y)u0( y)dy. (7)

In this case, D can be seen as a control of the local variance of an image. When
considering a limit case with ω (x, y) = δ(x − y), we can deduce that

D2 =
∫

!

(u(x) − u0(x))2dx. (8)

In this article, as suggested by Bertalmio et al. (2007), we shall use the linear combination
of the above two choices, i.e.

D = η

2
D1 + µ

2
D2, (9)

where η ≥ 0 and µ > 0 are parameters.
Therefore, by combining (3) and (9), we can obtain the following proposed energy

functional,

min
u

E(u) =
∫

!

|∇u(x) − g(x)
∣∣∣+η

2

∣∣∣ u(x) − 1
2

∣∣∣2 + µ

2

∣∣∣ u(x) − u0(x)|2dx, (10)
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subject to u(x) ∈ [0, 1]. Here, u0 is the initial image. As a suggestion, u0 can be set as the
weighted sum of un, n = 1, . . ., N , i.e. u0 = ∑N

n=1 wnun, where wn is defined in (1).
We note that, comparing with the GBEF method proposed by Piella (2009), the pro-

posed energy (10) does not contain the local contrast enhancement portion, which is
computation complicated, and (10) contains the l1-norm which allows many effective fast
algorithms.

The formula (10) can be solved by iteratively performing gradient descent steps.
However, the non-differentiability of the Ql1 brings computational difficulties (see Tai and
Wu 2009). To overcome this drawback, different techniques have been developed, such as
dual methods (see Chan, Golob, and Mulet 1999, Carter 2001), Chambolle’s algorithm
(see Chambolle 2004), the augmented Lagrangian method (see Tai and Wu 2009), and split
Bregman iteration (see Goldstein and Osher 2009). Since most of these methods are under
the same framework, we use the split Bregman algorithm to implement our model.

2.3. Numerical algorithm for the proposed method based on split Bregman theory

We will now apply the split Bregman framework (see Goldstein and Osher 2009) to solve
the l1-regularized optimization problem (10). As the precondition, we can see that the
functional (10) is convex.

The key of our method is that it will separate the l1 and l2 components of the energy in
(10). Rather than considering (10), we will consider the following constrained problem:

min
u,d

∫
|d| + η

2

∣∣∣∣u − 1
2

∣∣∣∣
2

+ µ

2
|u − u0|2dx, subject to d = ∇u − g. (11)

Obviously, this problem is equivalent to Equation (10). To solve this problem, we first
convert it to an unconstrained problem using the efficient Bregman iteration approach (see
Goldstein and Osher 2009).

(uk+1, dk+1) = arg min
u,d

∫

!

|d| + η

2

∣∣∣∣u − 1
2

∣∣∣∣
2

+ µ

2
|u − u0|2 + λ

2
|d − ∇u + g − bk|2dx,

(12)

bk+1 = bk − dk+1 + ∇uk+1 − g, (13)

where b is an auxiliary vector and k ∈ N ∪ {0}. In order to solve (12), we shall perform this
minimization efficiently by alternate iteration with u and d separately. The two steps are
performed as

uk+1 = arg min
u

∫

!

µ

2
|u − u0|2 + η

2
|u − 1

2
|2 + λ

2
|d − ∇u + g − bk|2dx, (14)

dk+1 = arg min
d

∫

!

|d| + λ

2
|d − ∇u + g − bk|2dx. (15)

The computational time of the split Bregman algorithm mainly depends on the efficiency
of (14) and (15), so we should solve them using some effective methods.
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Because the subproblem (14) is differentiable, optimality conditions for uk+1 are easily
obtained. By differentiating with respect to u, we can derive that

µ(uk+1 − u0) + η

(
uk+1 − 1

2

)
− λdiv(dk − ∇uk+1 + g − bk) = 0. (16)

We further write this optimality condition as

(µ + η − λ')uk+1 = µu0 + η

2
+ λdiv(dk + g − bk). (17)

The fast Fourier transform (FFT) can be used to solve the above problem

F(K)F(uk+1) = F(rhsk), (18)

where

K = µ + η − λ', (19)

rhsk = µu0 + η

2
+ λdiv(dk + g − bk), (20)

F denotes the FFT, F−1 denotes the inverse FFT, ' denotes the Laplacian operator, and
rhs is an auxiliary vector.

Therefore, the closed form solution of uk+1 in (14) is deduced as

uk+1 = F−1

(
F(rhsk)
F(K)

)

. (21)

The solution of subproblem (15) can be given directly by the following soft-
thresholding formula:

dk+1 = shrink
(

∇uk+1 − g + bk ,
1
λ

)
, (22)

where

shrink(x, ς ) = x
|x| · max(|x| − ς , 0). (23)

So far, the solution of proposed method is obtained. Since the constraint uk+1(x) ∈ [0, 1]
holds, we can use the following formula to truncate the value of uk+1 which exceeds
[0, 1] in each iteration:

uk+1 = max(min(uk+1, 1), 0). (24)

Using the above solver, the overall procedure of the proposed method can be shown in
Algorithm 1.
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Algorithm 1. The overall procedure for the proposed model

Input: The original images un : n = 1, . . ., N
Initialize: u0 = ∑N

n=1 wnun, u0 = u0 and d0 = b0 = 0. Fixed µ, η, λ, and tol
while ||uk − uk−1|| > tol

uk+1 = F−1
(

F (rhsk )
F (K)

)

dk+1 = shrink(∇uk+1 −∑N
i=1 wn∇ui + bk , 1

λ
)

bk+1 = bk + (∇uk+1 −∑N
i=1 wn∇ui − dk+1)

uk+1 = max(min(uk+1, 1), 0)
end
Output: the fused image u.

Note that we use the forward differences to approximate gradient operator and the
backward difference to approximate divergence operator. For convenience, we extend the
boundary of images symmetrically.

Figure 1 illustrates the procedure of proposed image fusion on two multisource
remotely sensed images provided by Xu, Chen, and Varshney (2011). First, the gradient
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Figure 1. Procedure of multisource image fusion based on the proposed method.
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fields ∇u1 = (∂u1/∂x, ∂u1/∂y)T and ∇u2 = (∂u2/∂x, ∂u2/∂y)T are, respectively, produced
from the original images u1 and u2. Observing the gradient sequence, we can see that
the proposed method can extract the salient features from the source image effectively.
Second, the gradient sequences are integrated into the target gradient g =

[
gx, gy

]T
. The

result shows that the integration makes the gradient more informative. As an example, the
boundaries of the road are more salient in g. Finally, the target gradient is transformed into
the fused image u with the proposed functional (10). Observing the source images u1 and
u2, we can find that the fused image performed by the proposed method is basically an
integration of clear contours in the original images. For example, both road and open land
are clear in the fused image.

3. Experimental results

In order to show the effectiveness, we test the proposed fusion method on some multisource
remotely sensed images. As introduced in Petrovic (2004a), Petrovic provided a multi-
sensor image set that contains 120 pair images (collected by Manchester University and
other organizations). This image set includes three types of images: (1) urban, industrial,
and natural scenes collected under the USA Airborne Multisensor Pod System (AMPS)
programme (Petrovic 2004a), (2) hyper-spectral images of natural scenarios acquired by
Bristol University for the UK Defence Research Agency (Brelstaff et al. 1995), and (3) mul-
tifocus and extreme exposure image groups (Res 2004). A detailed description of the image
set can be found in Petrovic (2004b, 2007) and Zheng et al. (2007). Because our focus is
on remotely sensed images, we only use that part in this data set.

All the experiments are implemented in Matlab 7.12 and run on an Intel
®

2.33 GHz
machine with 2 GB RAM, and all images are at a size of 256 × 256. We set µ = 0.5, η =
0.1, λ = 0.5, and tol = 10−6 in our experiments by trial and error. Besides, we have found
that the parameters are insensitive for our algorithm.

3.1. Evaluation of the fusion method

Evaluation of the image fusion method is a foundational and challenging task, especially
when it is hard to distinguish which of the fused results is better (see John et al. 2007). The
existing evaluation techniques can be roughly divided into two categories: qualitative visual
analysis and quantitative analysis (see Zheng et al. 2007; Stathaki 2008). While qualitative
visual analysis is difficult to implement due to the instability of the human visual sys-
tem (HVS), quantitative analysis can overcome this drawback by using recognized metrics.
Since no universal standard exists for image fusion evaluation, both the qualitative visual
and quantitative analyses are considered in this article.

To quantitatively evaluate the fused result, the following five typical evaluation metrics
are used.

(1) Objective quality fusion measure. Given un, n = 1, . . ., N multisource input
images, and u output fused image, the objective quality fusion measure QW (see
Piella and Heijmans 2003; Wang, Sheikh, and Simoncelli 2004; Petrovic 2007;
Piella 2009) is defined as

QW =
N∑

n=1

∑

w∈W

ln(w)Q0(un, u|w), (25)
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where ln(w) = λ · s(un|w) · max(s(un|w)) is a local weight indicating the relative
importance of input image un in window w, W is the family of all windows, λ is the
normalization parameter, and s(un|w) is local relevance (for example entropy and
contrast) of image un within the window w. Q0(un, u|w) = 2unu+C1

un
2+u2+C1

· 2σun σu+C2

σ 2
un +σ 2

u +C2
·

σun ,u+C3

σun σu+C3
is the local similarity of fused image u and original image un given by

the structural similarity index, where ū is the mean of u, and σ 2
u and σun,u are the

variance of u and covariance of un,u, respectively. The larger the value of QW , the
better the fused result.

(2) Objective image fusion performance measure. The normalized weighted objective
image fusion performance measure was proposed by Xydeas and Petrovic (2000).
It reflects the quality and precision of perceptually important information obtained
from the fusion of input images. The original measure is a criterion of two image
fusion performance. We now extend it to a multiple image fusion task, which is
defined as

QF =
∑N

n=1

∫
!

Qun,u(x)ω un (x)dx
∑N

n=1

∫
!

ω un(x)dx
, (26)

where ω un (x) is a weight and Qun,u(x) ∈ [0, 1] is an edge information preserva-
tion value. Qun,u(x) = 0 denotes the complete losing of edge information, and
Qun,u(x) = 1 indicates fusion from un to u without any waste of information. For
0 ≤ QF ≤ 1, the closer QF to 1, the more accurate the fusion is.

(3) Mutual information. Mutual information (see Qu, Zhang, and Yan 2001) is a
measurement of the fused image and each of the inputs, which is defined as

MI =
∑N

n=1 M(un, u)
∑N

i=1 H(ui)
, (27)

where M(un, u) denotes the mutual information between un and u, and H is the
entropy. Generally, the greater the mutual information, the clearer the image, that is
to say, the better the fused image.

(4) Average gradient. Average gradient is sensitive to subtle details of the image. It can
be used to evaluate the degree of ambiguity in the image and is calculated as (see
Liu et al. 2006).

AG = 1
|!|

∫

!

√(
∂u
∂x1

) 2

+
(

∂u
∂x2

) 2

dx. (28)

Generally, the greater the average gradient, the better the fusion result.
(5) Entropy. Entropy is an important index to measure the information of images. The

definition of entropy can be shown as (see Liu et al. 2006)

H(x) = −
L−1∑

i=0

pi log2 pi, (29)

where pi is the probability of the ith grey in the image and L is the grey level. The
larger the image entropy is, the better the fusion result.
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3.2. Visual analysis

A large number of fusion methods have been performed, and many of them achieve promis-
ing results. We now visually analyse the fused images obtained by using the proposed,
GBEF (Piella 2009), LP (Burt and Adelson 1983), FSDP (Anderson 1987), GP (Burt and
Kolczynski 1993), DWTD (Mallat 1989; Ranchin and Wald 1993), SIDWT (Rockinger
1997), and MP (Laporterie and Flouzat 2003) methods. It should be noted that we set all
the parameters in their methods according to the authors’ suggestions.

Figures 2–4 illustrate the comparison of fused results on multisource remotely sensed
images. In each figure, (a) and (b) represent the source images obtained by different sensors.
(c)–( j ) show the resulting images produced by the proposed, GBEF, LP, FSDP, GP, DWTD,
SIDWT, and MP methods, respectively. Observing the figures carefully, we can find that the
proposed method contains more details than all other methods. For example, in Figure 4(d)–
( j ), the building appears blurring and dimming, while in (c) it appears visually clear and
uniform.

Based on the above observation, we can conclude that, for visual performance, the
proposed image fusion method performs slightly better or equivalently to the other methods
on multisource remotely sensed images.

3.3. Quantitative analysis

Tables 1–3, which are, respectively, related to Figures 2–4, show the values of objective
quality fusion measure QW , objective image fusion performance measure QF , mutual infor-
mation MI, average gradient AG, and entropy H for the image fusion schemes including
the proposed, GBEF, LP, FSDP, GP, DWTD, SIDWT, and MP methods.

From these tables, the proposed image fusion method achieves the best performance,
resulting quantitative analysis indices include QW , QF , MI, AG, and H . We take Table 1 as
an example. The proposed method outperforms all of the other methods in QW , QF , MI,
and H measures. Especially in the QF measure, the value of the proposed method is 20 per-
centage points larger than that of the second best method (GBEF method). Although the
AG measure produced by the proposed method is not the best, it is only sightly smaller
than MP and greater than all other methods. Similar results can be found in Tables 2
and 3.

As can be seen from the above analysis, the proposed image fusion method is gener-
ally better than other conventional fusion schemes such as GBEF, LP, FSDP, GP, DWTD,
SIDWT, and MP methods, with respect to the related quantitative fusion analysis indices
including QW , QF , MI, AG, and H , on multisource remotely sensed images.

We also perform the quantitative evaluation for the method which uses the proposed
scheme but the Ql1 portion in (10) is replaced with Ql2 in (2). We call this method the
proposed fusion method with L2-norm (PFL2). For example, in Table 1, all quantitative
analysis indices of the proposed method are larger than that of PFL2. That is, the overall
results of the proposed method are better than PFL2. Thus, the results of the proposed
method contain more subtle details than PFL2. Therefore, we may draw the conclusion that
it is more reasonable for the proposed method to use the l1-norm over the l2-norm.

3.4. Computation efficiency analysis

To evaluate the computation efficiency of the proposed method, we further compare it with
the GBEF method, which is also a variational approach, using the images from Figures 2–4
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Table 1. Comparison of fused results in Figure 2.

Methods QW QF MI AG H

Proposed 0.6193 0.5246 0.1705 21.6480 7.4163
PFL2 0.5931 0.4242 0.1481 14.3985 6.8397
GBEF 0.4830 0.4407 0.1515 18.0999 7.3993
LP 0.4609 0.4140 0.1216 20.5918 7.3765
FSDP 0.4972 0.3891 0.1180 17.5436 7.2338
GP 0.5031 0.3945 0.1188 17.2778 7.2269
DWTD 0.4279 0.3784 0.1043 21.5563 7.3787
SIDWT 0.4606 0.4182 0.1115 20.8357 7.3585
MP 0.3967 0.3537 0.1161 23.5026 7.4119

Note: The bold values are the best.

Table 2. Comparison of fused results in Figure 3.

Methods QW QF MI AG H

Proposed 0.6409 0.4647 0.1469 16.0696 7.5352
PFL2 0.6143 0.3399 0.1156 10.1768 6.5246
GBEF 0.4407 0.3666 0.1383 15.6350 7.4686
LP 0.5771 0.4542 0.1369 17.4117 7.5254
FSDP 0.6031 0.4336 0.1425 13.7953 7.2813
GP 0.6121 0.4410 0.1468 13.5528 7.2721
DWTD 0.5535 0.3993 0.1266 17.6125 7.4892
SIDWT 0.5928 0.4577 0.1407 16.8125 7.4720
MP 0.4901 0.4078 0.1418 19.0126 7.4962

Note: The bold values are the best.

Table 3. Comparison of fused results in Figure 4.

Methods QW QF MI AG H

Proposed 0.7020 0.4977 0.3104 7.9930 6.6936
PFL2 0.6761 0.4832 0.3420 7.6907 6.6933
GBEF 0.5994 0.4632 0.3567 7.8131 6.6806
LP 0.4824 0.4732 0.1950 7.3325 6.2461
FSDP 0.5308 0.4634 0.1622 5.2999 6.0871
GP 0.5370 0.4734 0.1488 5.2396 6.0721
DWTD 0.4693 0.4390 0.1470 7.4169 6.2083
SIDWT 0.4877 0.4881 0.1775 7.2057 6.1149
MP 0.3901 0.4087 0.1496 7.9492 6.2920

Note: The bold values are the best.

with respect to time costs. Besides, the computational time of the PFL2 method is also
presented. The results are shown in Table 4. All of the values are average time obtained by
repeatedly processing 20 times for each figure.

We can see from Table 4 that the time costs of the proposed method are almost one-fifth
those of the GBEF method, and less than half those of the PFL2 method. The main reason is
that a time-consuming component used for local enhancement exists in the GBEF method,
and the time variable in the gradient descent flow influences the speed of the PFL2 method
(here we use the gradient descent flow to implement the PFL2), while the proposed method
has no complex partition and has used the split Bregman algorithm.
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Table 4. Comparison of computation time of different methods (in seconds).

Methods Figure 2 Figure 3 Figure 4

GBEF 5.5765 4.4198 4.5968
PFL2 2.7475 2.0297 1.9886
Proposed 0.9652 0.7977 0.8395

Note: The bold values are the best.
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Figure 5. Error versus iterations for the proposed method and GBEF method (Piella 2009). The
error at iteration k is defined as

∥∥uk − uk−1
∥∥ /
∥∥uk−1

∥∥, where uk is the approximation at iteration k.
The convergence result is for the images in Figure 2.

The convergence speed of the proposed method is also presented in Figure 5, where
as we have plotted the error versus iterations for the images in Figure 2. To compare our
method to another method, we also draw the convergence curve for the GBEF method.
Observing the result, we can find that the proposed method converges faster than the
GBEF method. In addition, the proposed method has reached promising results after the
first 10 iterations, while the GBEF method needs at least 20 iterations to achieve the same
effect.

4. Conclusions

We have introduced an image fusion method for multisource remotely sensed images. The
proposed method (1) extracted the gradient features from original images, (2) integrated
them into a new target gradient, and (3) obtained the fused image by minimizing an energy
functional. For tackling the functional more efficiently, we used the split Bregman algorithm
to obtain the final solution. Compared with the GBEF technique, our method is simple
since it does not contain the complicated perceptual contrast enhancement term. Besides,
our method uses the l1-norm, which allows the fast algorithm (split Bregman iterator).
In order to prove the effectiveness of the proposed method, we introduced the qualitative
visual and quantitative analyses. The comparing results demonstrated that our method is
generally better than many existing fusion schemes with respect to the related evaluation
criteria. In particular, the comparison in time efficiency with the GBEF and PFL2 methods
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also demonstrated the effectiveness of the proposed method. Therefore, we can draw a
conclusion that the proposed method can effectively extract salient features and composite
it into the resulting image.

The feature extraction and integration of multisource images is a developing problem
in multisource remote-sensing image processing. Our method is effective, but it also can be
improved in terms of feature extraction and integration functional. We will further extend
our model for more accurate fusions.
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