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A New Algorithm Framework for Image Inpainting in Transform Domain∗

Fang Li† and Tieyong Zeng‡

Abstract. In this paper, we focus on variational approaches for image inpainting in transform domain and
propose two new algorithms, iterative coupled transform domain inpainting (ICTDI) and iterative
decoupled transform domain inpainting. In the derivation of ICTDI, we use operator splitting and
the quadratic penalty technique to get a new approximate problem of the basic model. By the
alternating minimization method, the approximate problem can be decomposed as three relatively
simple subproblems with closed-form solutions. However, ICTDI is not efficient when some adaptive
regularization operator is used, such as the learned BM3D frame. To overcome this drawback, with
some modifications, we decouple our framework into three relatively independent parts: denoising,
linear combination in the transform domain, and linear combination in the image domain. Therefore,
we can use any existing denoising method in the denoising step. We consider three choices for
regularization operators in our approach: gradient operator, tight framelet transform, and learned
BM3D frame. The numerical experiments and comparisons on various images demonstrate the
effectiveness of the proposed methods. The convergence of the numerical algorithms is proved under
some assumptions.
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1. Introduction. Image inpainting is the procedure of recovering lost or deteriorated parts
of images and videos. More precisely, the problem of image inpainting occurs when the ob-
served data is incomplete in the sense that some pixels or coefficients of the target image under
a certain transform are missing or corrupted [2, 48]. The main challenge of this important
task is to find a solution having edges, structures, and texture patterns consistent with the
given data [8].

Many useful techniques have been proposed in recent years to address the image inpainting
task, which can be roughly classified into two categories: image domain inpainting and trans-
form domain inpainting [48]. Here image domain inpainting means that some data in the image
domain is missing or, equivalently, some pixels are missing. Image domain inpainting has wide
application in text and scratch removal in ancient drawings or old pictures, removal of objects
in photography or films for special effects, recovering lost pixels damaged in image coding
and transmission, etc. [2, 17]. On the other hand, transform domain inpainting means that
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 25

some coefficients in a certain transform domain are missing. Transformed domain inpainting
arises in practical applications because images are usually formatted, transmitted, and stored
in a transformed domain. For instance, JPEG standard images are encoded in terms of dis-
crete cosine transform coefficients and JPEG 2000 standard images are encoded by wavelet
transform coefficients, and in magnetic resonance (MR) imaging the acquired data is Fourier
transform coefficients [12, 14]. Certain coefficients may be lost or corrupted during the process
of storage and transmission and this leads to the transformed domain inpainting problem.

Image domain inpainting has been widely studied in literature in has past decades. One
important stream for this issue is the pixel based method, including variational and partial
differential equation (PDE) based methods, and the sparsity driven method. In the PDE
method, the missing region is filled by diffusing the image information from the known region
to the missing region [2, 1, 41, 42, 3, 43]. In the sparsity based method, the image is represented
by a sparse combination of a set of transforms such as wavelet or tight frame, and then the
missing pixels can be filled by adaptively updating the sparse representation [23, 27, 8, 24,
49, 39, 34]. The other category is the exemplar based inpainting method, in which the image
information in the known region propagates into the missing region patch by patch [17, 46, 47].

Transform domain inpainting has also received remarkable attention in variational ap-
proaches. Indeed, currently the main existing works have been focused on wavelet domain
inpainting and Fourier domain inpainting. The first variational wavelet inpainting method
was proposed by Chan, Shen, and Zhou [13]. As a counterpart of the image domain total vari-
ation (TV) inpainting model in [41], Chan, Shen, and Zhou propose the TV wavelet inpainting
model for filling in the missing coefficients in the wavelet domain. They use the terminology
“wavelet inpainting” to address that the missing data is in the wavelet transform domain.
Numerically, they evolve the associate PDE in the wavelet domain which converges rather
slowly. In the literature, many fast numerical methods have been proposed to handle the TV
denoising/deblurring problem—for instance, Chambolle’s fast dual projection algorithm [9],
the fast TV deconvolution algorithm [44], the split Bregman method [26], the primal dual
method [10, 20], and so on [6]. They are applied to solve the TV wavelet inpainting problem
and get efficient algorithms. Chan, Win, and Yip [11] propose a fast optimization transfer
algorithm (OTA). Based on the variable splitting method, the problem is split into a standard
TV denoising subproblem and another simple problem with a closed-form solution. Cham-
bolle’s fast dual projection algorithm [9] is then used to solve the TV denoising problem.
Later Chan, Yang, and Yuan [12] proposed to use the alternating direction method (ADM)
to solve the TV wavelet inpainting model in which two extra variables are introduced. It is
reported that ADM is more efficient than OTA with similar image inpainting quality. Wen,
Chan, and Yip [45] propose a primal-dual type numerical algorithm to solve this problem and
convergence is proved. Another primal-dual hybrid gradient method is proposed in [48] by Ye,
Sapiro, and Mallet. Nonlocal TV (NLTV) regularization is considered in wavelet inpainting
by Zhang and Chan. [51].

Fourier domain inpainting has been widely addressed in the MR imaging problem such
as partial parallel imaging. Sometimes, it is also termed compressed sensing. Since the
wavelet transform and the Fourier transform have quite different properties, inpainting in
these two domains is also different in many aspects. Hence, wavelet domain inpainting and
Fourier domain inpainting are commonly not addressed simultaneously in a paper. Moreover,
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26 FANG LI AND TIEYONG ZENG

the TV Fourier inpainting model is also a basic model for this issue. To solve this model,
Goldstein and Osher [26] propose to use the split Bregman method and Chen et al. [14] propose
two fast algorithms based on the primal-dual hybrid gradient method. Some other types of
regularization have also been considered. Ma et al. [36] propose a model with both TV and
wavelet regularization and an efficient numerical algorithm is deduced following the operator
splitting technique. Guo, Qin, and Yin [28] propose a total generalized variation and shearlet
based regularization scheme, and the alternating direction method of multiplier (ADMM) is
used to derive the algorithm. Zhang et al. [50] propose to use NLTV as the regularization
term and build the algorithm based on Bregmanized operator splitting.

In this paper, we generalize our previous work [34] built for pixel domain inpainting to
transform domain inpainting. We extend the existing TV transform domain inpainting model
and propose new numerical algorithms based on variable splitting and the quadratic penalty
method. By utilizing the variable splitting method, we get a relaxed minimization problem
with two auxiliary variables. The two variables and the latent image can be efficiently solved
by the alternating minimization method. Then we get a general framework called the iterative
coupled transform domain inpainting (ICTDI) algorithm. For some special transform such
as the learned BM3D frame, ICTDI is not so efficient since an ill-conditioned subproblem is
involved. Inspired by the decoupling idea in [19, 34], we make a similar modification and get
the iterative decoupled transform domain inpainting (IDTDI) algorithm. In the decoupled
algorithm, the iteration scheme is decoupled into three steps, which come from minimizing
two different energies. One step is denoising. The other two steps are linear combinations in
the image domain and the transform domain, respectively. In such a framework, the denoising
step becomes crucial. As we know, image denoising is far more widely studied than transform
domain inpainting. So we can use the existing best denoising method in this step such as the
overcomplete dictionary learning method or learned BM3D filter. Henceforth, we can get the
state-of-the-art inpainting results. An additional advantage of the framework of our algorithm
is that it can be readily generalized to other important image processing tasks such as image
decompression, which will be our future work.

The contribution of our paper is clear. First, we propose a new algorithm framework
(ICTDI and IDTDI) for the transform domain image inpainting problem by considering many
existing popular regularization operators. Second, the design of the decoupled algorithm
provides a natural approach to integrate the BM3D filter which can greatly improve the
image inpainting quality. The idea of decoupling can be readily extended to other image
tasks.

The paper is organized as follows. In section 2, we give the general model and propose
two new algorithms for transform domain inpainting. Some mathematical results are proved
in section 3. The experiments and comparisons with the previous algorithms are performed
in section 4. Finally, we conclude this work in section 5.

2. The proposed method. In this section, we extend the existing model for transform
domain inpainting by considering more general regularization and propose two new algorithms
to solve it which depend on the choice of regularization operator.

2.1. The model. We will denote images as vectors by stacking their columns. Suppose
u ∈ RN is the image to be recovered, where N denotes the number of pixels. The general
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 27

image inpainting problem can be formulated as [48]

(2.1) f = PT u+ n,

where T ∈ RN×N is the transform under which the data is acquired, P ∈ Rm×N is the binary
selection/downsampling matrix containing m < N rows of the identity matrix of order N , n is
the additive noise, and f ∈ Rm is the acquired data in transform domain which is incomplete
and our aim is to recover the missing/damaged data. When T is the identity matrix, it
becomes the image domain inpainting model. In this paper, we focus on two cases where T
is a wavelet transform or Fourier transform which satisfies

(2.2) T TT = I.

Here the superscript T denotes the conjugate operator. Note that the algorithm framework
in this section also holds for the general transform domain. Assume that Φ ∈ RM×N is a
given transform matrix corresponding to some regularization operator. To fill in the missing
transform coefficients, we consider the general model

(2.3) min
u

‖Φu‖p +
λ

2
‖PT u− f‖22,

where λ is a positive regularization parameter, p = 0 or 1. When Φ = ∇, p = 1, it becomes
the widely studied TV inpainting model for transform domain inpainting.

The first term in model (2.3) is a regularization term which requires that the representation
of Φu is sparse. The second term is a data fitting term, which requires that the subsampled
transformed coefficient PT u should be close to the given data f .

The model in (2.3) can be easily generalized to another problem such as deblurring and
transform domain inpainting, in which the model is

(2.4) min
u

‖Φu‖p +
λ

2
‖PT Au− f‖22,

where A is the blur operator. Note that this version is not considered in the rest of the paper.

2.2. The algorithm ICTDI. To solve problem (2.3) efficiently, we use the variable splitting
technique and quadratic penalty method in the algorithm design. First, we introduce two
auxiliary variables and rewrite model (2.3) into the following equivalent formulation with
constraints:

(2.5)
min

d1,d2,u
‖d1‖p + λ

2‖Pd2 − f‖22
s.t. Φu = d1,T u = d2.

Note that this variable splitting method is also used in [12], which has the advantage of
separating the two operators P and T such that many existing methods can be used to handle
this constrained minimization problem. The authors in [12] use ADM to solve the constrained
model, which is also equivalent to ADMM or alternating split Bregman [40]. Many other
efficient methods can also be used to solve this problem, including the accelerated primal-
dual methods in various forms; we refer to [10, 15, 16, 31, 35] and the references therein for

D
ow

nl
oa

de
d 

05
/2

8/
18

 to
 2

19
.2

28
.1

46
.1

48
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

28 FANG LI AND TIEYONG ZENG

more details. In this paper, we propose to use the quadratic penalty method to handle the
constraints. This method has the advantage that it can be easily changed to another efficient
algorithm, which will be addressed in the next subsection. Hence we can approximate model
(2.5) by

(2.6) min
d1,d2,u

E(d1, d2, u) =
{

‖d1‖p + λ
2‖Pd2 − f‖22 + μ

2‖Φu− d1‖22 + μ
2‖T u− d2‖22

}
,

where μ is a positive parameter. When the penalty parameter μ → +∞, according to the
convergence of the quadratic penalty method [38, Theorem 17.1], the solution of (2.6) con-
verges to (2.3). Then we solve the approximated model (2.6) by the alternating minimization
method in the following. We set τ = 1/μ, γ = λ/μ to simplify the notation.

2.2.1. Solving d1, d2. Fixing u, the subproblems for d1 and d2 are separable. For d1, the
subproblem is

(2.7) min
d1

‖d1‖p +
μ

2
‖Φu− d1‖22.

It is well known that when p = 0 [5], (2.7) is solved by hard shrinkage, i.e.,

(2.8) d1 =

{
0 if |Φu| <

√
2τ ,

Φu otherwise.

When p = 1 [26], it is solved by soft shrinkage, that is,

(2.9) d1 = max{|Φu| − τ, 0}sign(Φu).

For simplicity, we use the uniform notation as

d1 = shrinkp(Φu, τ),

where p = 0 denotes hard shrinkage (2.8) and p = 1 denotes soft shrinkage (2.9).

The subproblem for d2 is

(2.10) min
d2

γ‖Pd2 − f‖22 + ‖T u− d2‖22.

The closed-form solution for d2 is given by

(2.11) d2 =
(
γPTP + I

)−1 (
γPT f + T u

)
.

Since P is the selection matrix, PTP is a diagonal matrix with diagonal elements 0 or 1, and(
γPTP + I

)−1
is a diagonal matrix with diagonal entries 1 or 1

γ+1 . Hence the formula of d2
can be simplified as

(2.12) d2 =

{
T u, missing coefficents,
γPT f+T u

γ+1 , selected coefficients.
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 29

If we reshape T u and PT f into an
√
N ×

√
N matrix, denoted as P̃T f and T̃ u, and use

Λ ∈ R
√
N×

√
N to denote the selection matrix, then d̃2 as an

√
N×

√
N matrix can be formulated

as

(2.13) d̃2 =
γΛP̃T f + T̃ u

γΛ + 1
,

where ΛP̃T f is a pointwise multiplication of matrices. Hence the solution of d2 can be viewed
as linear combination of given data PT f and estimated data T u. Actually, (2.13) is used in
the numerical implementation for its simplicity,

2.2.2. Solving u. Fixing d1 and d2, the subproblem for u is

(2.14) min
u

‖Φu− d1‖22 + ‖T u− d2‖22.

It is easy to get that the closed-form solution of u is

(2.15) u = (ΦTΦ+ I)−1(ΦTd1 + T Td2).

Finally, the algorithm is summarized in Algorithm 1, ICTDI.

Algorithm 1. ICTDI.

• Initialization: u0 = T TPT f, d01 = 0, d02 = 0.
• For k = 0, 1, 2, . . ., repeat until stopping criterion is reached

dk+1
1 = shrinkp(Φu

k, τ);

dk+1
2 =

(
γPTP + I

)−1
(
γPT f + T uk

)
;

uk+1 = (ΦTΦ+ I)−1(ΦTdk+1
1 + T Tdk+1

2 ).

• Output: uk+1.

2.3. Algorithm IDTDI. Note that when Φ is set as the gradient operator, wavelet, or
tight frame, Φ is a fixed matrix. Especially, when Φ is the gradient operator, ΦTΦ can be
diagonalized by the fast Fourier transform, which makes the computation of updating u very
fast. For wavelet and tight frame, Φ is an analysis matrix and ΦT equals to the synthesis
matrix such that the following equality holds:

ΦTΦ = I.

In this case the iteration of u becomes a simple linear combination. However, this equality does
not hold for the image adaptive denoising method including dictionary learning [22, 21, 30]
and the BM3D filter [18]. In the following, we consider the BM3D filter as an example.

Assume that the analysis and synthesis operators of the BM3D filter are Φ and Ψ, respec-
tively. Let us review the BM3D filter process briefly. The algorithm of the BM3D filter can
be split into three steps [18, 19]:
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30 FANG LI AND TIEYONG ZENG

(1) Analysis. Similar image blocks are collected in groups. Then blocks in each group are
stacked together to form three-dimensional (3D) data arrays which are decorrelated
using an invertible 3D transform.

(2) Processing. The obtained 3D group spectra are filtered by hard/soft thresholding.
(3) Synthesis. The filtered spectra are inverted, providing estimates for each block in the

group. These blockwise estimates are returned to their original positions, and the final
image reconstruction is calculated as a weighted average of all the obtained blockwise
estimates.

In fact, BM3D filter denoising can be expressed by applying the following operator on the
given noisy data:

Ψ ◦ shrinkp ◦Φ.
Moreover, Danielyan, Katkovnik, and K. Egiazarian [19] give the explicit formulation of

Φ,Ψ which is abbreviated here because of space limitations. They prove that Φ, ΦT , and Ψ
have the following relationships:

(2.16) ΦTΦ = W > 0,Ψ = W−1ΦT ,ΨΦ = I.

Here W is a diagonal matrix whose entries are defined by the data grouping and counting
the number of times each pixel appears in different groups. Experiments show that the range
of these entries is very large (up to several hundred times). Hence the matrix ΦTΦ + I is
ill-conditioned, which leads to numerical difficulty. To overcome this drawback, following the
methods in [19] and [34], we replace ΦT by Ψ in Algorithm 1 in the iteration step of u, which
yields a new algorithm, IDTDI, detailed in Algorithm 2. Here Φ and Ψ are image adaptive,
i.e., Φ = Φ(uk) and Ψ = Ψ(uk).

Algorithm 2. IDTDI.

• Initialization: u0 = T TPT f, d01 = 0, d02 = 0.
• For k = 0, 1, 2, . . ., repeat until stopping criterion is reached

dk+1
1 = shrinkp(Φu

k, τ);

dk+1
2 =

(
γPTP + I

)−1
(
γPT f + T uk

)
;

uk+1 =
1

2

(
Ψdk+1

1 + T Tdk+1
2

)
.

• Output: uk+1.

We remark that when Ψ = ΦT , Algorithm 1 is equivalent to Algorithm 2. However, when
Ψ 	= ΦT , the two algorithms are extremely different. All the updating formulas of Algorithm
1 are derived by minimizing the same energy functional in (2.6), and such that it is called the
“coupled” algorithm. In contrast, the iteration formulas in Algorithm 2 come from minimizing
the following decoupled functionals, respectively:

(2.17)

⎧⎨⎩ (d1, d2) = arg min
d1,d2

‖d1‖1 + λ
2‖Pd2 − f‖22 + μ

2‖Φu− d1‖22 + μ
2 ‖T u− d2‖22,

u = argmin
u

‖u−Ψd1‖22 + ‖T u− d2‖22.
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 31

That is the reason Algorithm 2 is called “decoupled.” Basically, (2.17) is obtained by replacing
ΦT as Ψ in the ICTDI algorithm of (2.6). As here Ψ can better describe the image features,
this replacement has the potential to have better image reconstruction in our case.

In fact, the main updating formula in IDTDI can also be rewritten as

(2.18)

⎧⎪⎪⎨⎪⎪⎩
ũk+1 = Ψ ◦ shrinkp ◦ Φ(uk);
dk+1
2 =

(
γPTP + I

)−1
(
γPT f + T uk

)
;

uk+1 =
1

2

(
ũk+1 + T Tdk+1

2

)
.

In this formulation Algorithm 2 is split into three simple iteration steps: denoising (ũ), lin-
ear combination in the transform domain (d2), and linear combination in the image domain
(u). Since the first denoising step is individual, we can use various denoising methods in this
step—for example, the state-of-the-art denoising methods such as the overcomplete dictionary
learning based denoising method and the BM3D denoising method. As the state-of-the-art
denoising method is used in the first step, it is reasonable to expect the state-of-the-art inpaint-
ing results. This is the advantage of the decoupling process. We remark that the advantage
of decoupling has also been shown in image deblurring and the denoising method [19] and
the image domain inpainting method [34]. In [19] the original problem is decoupled into two
individual steps: denoising and deblurring. In [34] the inpainting problem is decoupled into
denoising and linear combination. Then the BM3D filter is used in the denoising step and
state-of-the-art results are achieved.

3. Convergence analysis.

3.1. Convergence of algorithm ICTDI. Assume that p = 1 in this section. We consider
the convergence of both algorithms ICTDI and IDTDI. For simplicity, we use S1 to denote the
soft shrinkage operator shrink1, S2 to denote the operator

(
γPTP + I

)−1
, and M to denote

ΦTΦ+ I. Using these notations, algorithm ICTDI can be simplified as follows:

(3.1)

⎧⎨⎩
dk+1
1 = S1(Φu

k),

dk+1
2 = S2

(
γPT f + T uk

)
,

uk+1 = M−1(ΦTdk+1
1 + T Tdk+1

2 ).

Furthermore, by introducing the linear operators

h1(d1, d2) := ΦM−1(ΦTd1 + T Td2),

h2(d1, d2) := γPT f + T M−1(ΦT d1 + T Td2),

we can rewrite (3.1) as

(3.2)

⎧⎨⎩
dk+1
1 = S1 ◦ h1(dk1 , dk2),

dk+1
2 = S2 ◦ h2(dk1 , dk2),

uk+1 = M−1(ΦTdk+1
1 + T Tdk+1

2 ).

We claim that problem (2.6) has at least one solution under the assumption that the null
space of operators Φ and T satisfies

(3.3) N (Φ) ∩ N (T ) = {0}.
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Under condition (3.3), it is easy to deduce that the function E(d1, d2, u) in (2.6) is coercive,
that is, E(d1, d2, u) → ∞ as ‖(d1, d2, u)‖ → ∞. Moreover, E(d1, d2, u) is convex and bounded
from below. Therefore, by the standard argument in [4], we get that E(d1, d2, u) has at least
one minimizer pair (d∗1, d

∗
2, u

∗) which satisfies the following Euler–Lagrange equations:

(3.4)

⎧⎨⎩
d∗1 = S1 ◦ h1(d∗1, d∗2),
d∗2 = S2 ◦ h2(d∗1, d∗2),
u∗ = M−1(ΦTd∗1 + T Td∗2).

We use the notation

d =

(
d1
d2

)
, H =

(
Φ
T

)
and define

h(d) := (h1(d1, d2), h2(d1, d2)) , S ◦ h(d) := (S1 ◦ h1,S2 ◦ h2)(d).

Then the first two equations of (3.4) imply that d∗ = (d∗1, d
∗
2) is a fixed point of S ◦

h. Hence the convergence analysis of ICTDI can be established based on the properties of
nonexpansiveness of operators S and h. The nonexpansiveness of soft shrinkage operator S1

has been proved in [44, 34]. The nonexpansiveness of S2 is obvious since

‖(γP TP + I)−1‖ ≤ 1.

The following proposition states the nonexpansiveness of operator h.
Proposition 3.1. For any d, d̃ in the range of H, we have

(3.5) ‖h(d) − h(d̃)‖ ≤ ‖d− d̃‖.

The equality holds if and only if h(d) − h(d̃) = d− d̃.
Proof. By the definition of h, we have

(3.6)

∥∥∥h(d) − h(d̃)
∥∥∥ =

∥∥∥∥( h1(d1, d2)− h1(d̃1, d̃2)

h2(d1, d2)− h2(d̃1, d̃2)

)∥∥∥∥
=

∥∥∥∥( ΦM−1ΦT ΦM−1T T

TM−1ΦT TM−1T T

)(
d1 − d̃1
d2 − d̃2

)∥∥∥∥
=

∥∥∥HM−1HT
(
d− d̃

)∥∥∥
≤ max |ρ(Q)|

∥∥∥d− d̃
∥∥∥ ,

where Q = HM−1HT and ρ(Q) denotes the eigenvalues of Q. We claim that 0 ≤ ρ(Q) ≤ 1.
Using the assumption (2.2), we get HTH = ΦTΦ+T TT = ΦTΦ+ I = M . Meanwhile, by [32,
Theorem 1.3.22], Q = HM−1HT have the same nonzero eigenvalues as M−1HTH. Since

M−1HTH = M−1M = I,

we conclude that ρ(Q) ∈ {0, 1}. Then from (3.6) we can deduce that h is nonexpansive, i.e.,

‖h(d) − h(d̃)‖ ≤ ‖d− d̃‖.
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 33

Assume that Q = UTΣU is the eigen-decomposition of Q, where U is an orthogonal
matrix and Σ is a diagonal matrix with elements in {0, 1}. If the equality holds, we have
‖UTΣU(d − d̃)‖ = ‖d − d̃‖, and then ‖ΣU(d − d̃)‖ = ‖U(d − d̃)‖. By the property of Σ, we
deduce that ΣU(d− d̃) = U(d − d̃). Multiplying both sides of the above equation by UT , we
get h(d) − h(d̃) = d− d̃.

Based on the nonexpansive property of S and h, by a similar argument as in Theorem 3.4
[44], we can prove the convergence of ICTDI in the following theorem. The proof is omitted.

Theorem 3.2. Assume that condition (3.3) holds. Then for any fixed parameters τ > 0, γ >
0, the sequence {(dk1 , dk2 , uk)} generated by algorithm ICTDI converges to a solution (d∗1, d

∗
2, u

∗)
of problem (2.6).

3.2. Convergence of algorithm IDTDI. We use the same notation S1 and S2 as in sub-
section 3.1. By introducing the linear operators

g1(d1, d2) :=
1

2
Φ(Ψd1 + T Td2),

g2(d1, d2) := γPT f +
1

2
T (Ψd1 + T Td2),

we can simplify algorithm IDTDI as

(3.7)

⎧⎪⎨⎪⎩
dk+1
1 = S1 ◦ g1(dk1 , dk2),

dk+1
2 = S2 ◦ g2(dk1 , dk2),

uk+1 =
1

2

(
Ψdk+1

1 + T Tdk+1
2

)
.

Denote

d =

(
d1
d2

)
, G =

(
Φ
T

)
, K =

(
Ψ T T

)
and define

g(d) := (g1(d1, d2), g2(d1, d2)) , S ◦ g(d) := (S1 ◦ g1,S2 ◦ g2)(d).

Then the convergence analysis of IDTDI can be established based on the properties of non-
expansiveness of operators S and g. The nonexpansiveness of operator g is stated in the
following proposition.

Proposition 3.3. Assume that GK is normal. For any d, d̃ in the range of G, we have

(3.8) ‖g(d) − g(d̃)‖ ≤ ‖d− d̃‖.

The equality holds if and only if g(d) − g(d̃) = d− d̃.
Proof. Since GK is normal, by the definition of g, we have

(3.9)

∥∥∥g(d) − g(d̃)
∥∥∥ =

∥∥∥∥( g1(d1, d2)− h1(d̃1, d̃2)

g2(d1, d2)− h2(d̃1, d̃2)

)∥∥∥∥
=

1

2

∥∥∥∥( ΦΨ ΦT T

TΨ TT T

)(
d1 − d̃1
d2 − d̃2

)∥∥∥∥
=

1

2

∥∥∥GK
(
d− d̃

)∥∥∥
≤ 1

2
max |ρ(GK)|

∥∥∥d− d̃
∥∥∥ .
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34 FANG LI AND TIEYONG ZENG

By [32, Theorem 1.3.22], GK has the same nonzero eigenvalues as

KG = ΨΦ+ T TT = 2I.

Hence the eigenvalues ρ(GK) ∈ {0, 2}. Together with (3.9), we conclude that g is nonexpan-
sive, i.e.,

‖g(d) − g(d̃)‖ ≤ ‖g − g̃‖.
Following a similar argument as in Proposition 3.1, we can get that the quality in (3.8) holds
if and only if g(d)− g(d̃) = d− d̃.

Similarly as in Theorem 3.2, we can prove the following result for algorithm IDTDI when
Φ is chosen as the BM3D frame.

Theorem 3.4. Assume that the fixed point set of problem (2.17) is nonempty. Then for
any fixed parameters τ > 0, γ > 0, the sequence {(dk1 , dk2 , uk)} generated by algorithm IDTDI
converges to a fixed point (d∗1, d

∗
2, u

∗) of problem (2.17).

3.3. Convergence of algorithms ICTDI/IDTDI for special case. If the operators Φ and
Ψ satisfy condition

(3.10) ΦT = Ψ,ΦTΦ = I,

we get that
‖ΦT ‖ = ‖Ψ‖ = ‖Φ‖ = 1.

For example, if Φ and Ψ are synthesis and analysis operators of some tight framelet, the above
condition is satisfied. Then algorithm ICTDI is equivalent to algorithm IDTDI. Meanwhile,
problem (2.6) is equivalent to problem (2.17). In this case, the convergence can be proved in
a much easier way in the following. We rewrite the iteration of u as

uk+1 =
1

2

(
Ψdk+1

1 + T Tdk+1
2

)
=

1

2

(
ΨS1Φu

k + γT TS2PT f + T TS2T uk
)

and define
uk+1 := �(uk).

Then we can prove the following proposition, which states the nonexpansiveness of operator
�.

Proposition 3.5. For any u, ũ, we have

(3.11) ‖�(u)− �(ũ)‖ ≤ ‖u− ũ‖.

The equality holds if and only if �(u)− �(ũ) = u− ũ.
Proof. By the definition of �, we can deduce that

(3.12)

‖�(u)− �(ũ)‖ =
1

2
‖(ΨS1Φ+ T TS2T )(u− ũ)‖

≤ 1

2
(‖Ψ(S1(Φu)− S1(Φũ)) ‖+ ‖T TS2T ‖‖u− ũ‖)

≤ 1

2
(‖Ψ‖‖Φ‖‖u − ũ‖+ ‖T T ‖‖S2‖‖T ‖‖u − ũ‖)

≤ ‖u− ũ‖.
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 35

In the last equality we used the fact that ‖T T ‖ = ‖T ‖ = 1, which is deduced from assumption
(2.2). Following a similar argument as in Proposition 1, we can get that the quality in (3.12)
holds if and only if �(u)− �(ũ) = u− ũ.

Then we have the following convergence result.
Theorem 3.6.Assume that condition (3.3) holds. Then for any fixed parameters τ > 0, γ >

0, the sequence {(dk1 , dk2 , uk)} generated by algorithm ICTDI or IDTDI converges to a solution
(d∗1, d

∗
2, u

∗) of problem (2.6).
Particularly, in the case of a tight framelet, we can get a stronger result under the as-

sumption that low frequency coefficients remain unchanged during the shrinkage process. This
assumption is very common in image restoration problems since the noise is usually regarded
as contained in the high frequency part. Following [7], we split the tight framelet transform
matrix Φ as low frequency part L and high frequency part H, which satisfies

(3.13) ΦTΦ = LTL+HTH = I.

Define the new shrinkage operator as

(3.14) S̃Φu =

[
Lu
SHu

]
in which the low frequency coefficients remain unchanged. Then we have the following con-
vergence theorem.

Theorem 3.7. If Φ is a tight framelet transform, and the smallest eigenvalue η of L satisfies
η > 0, then the sequence {uk} generated by algorithm ICTDI/IDTDI where S is replaced by
S̃ converges with a convergence factor 1− η2/2 > 0.

Proof. In (3.13) since LTL and HTH are both nonnegative definite, it is easy to get that
the smallest eigenvalue η of L satisfies η < 1. Then the smallest eigenvalue of LTL is η2 < 1.
Using the equality (3.13), we derive that the largest eigenvalue of HTH is 1 − η2. Then
‖HT ‖ = ‖H‖ =

√
1− η2. Equation (3.12) yields

‖�(u) − �(w)‖ ≤ (1− η2/2)‖u − w‖.

The conclusion thus follows.
Note that as shown in [7], if N is properly chosen the assumption η > 0 can be satis-

fied. However, in experiments, we find that the image size has no obvious influence on the
convergence.

4. Experimental results. In this section, we apply the proposed algorithms on several
standard test images in which some coefficients are missing in the wavelet transform domain
or the Fourier transform domain. The results are compared with some closely related methods
in the literature.

4.1. Experiments setting. We choose three typical test images in our experiments,
“Slope,” “Cameraman,” and “Barbara,” displayed in Figure 1. The Slope image is piece-
wise smooth with sharp edges. The Cameraman image has both a large area of cartoon and
some fine strutures. The Barbara image has many texture patterns. Three subregions inside
the red rectangle will be zoomed to compare in detail.
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36 FANG LI AND TIEYONG ZENG

(a) Slope (b) Cameraman (c) Barbara

Figure 1. Test images.

(a) sparsity = 50% (b) sparsity = 30.72%

Figure 2. Inpainting masks in transform domain with missing data marked in black. (a) Wavelet domain
mask; (b) Fourier domain mask.

In Figure 2, we display two selection/downsampling masks for the transform domain. Fig-
ure 2(a) is the mask for wavelet domain inpainting in which 50% randomly chosen coefficients
are known, and Figure 2(b) is the mask for Fourier domain inpainting in which 30.72% coeffi-
cients are known, including a rectangle in the low frequency area and some randomly chosen
high frequency data. Note that for Fourier domain inpainting, we include some low frequency
coefficients around the center in order to get better image visual quality. See [14] for other
kinds of masks in the Fourier domain in which also a small area of low frequency data are
included. Model (2.1) is used to simulate the transform domain inpainting data. For wavelet
domain inpainting, T is set as the wavelet transform with daubcqf(6) basis and two levels of
decomposition using Rice wavelet toolbox 2.4. Gaussian noise with zero mean and standard
deviation 1 is added.

We mainly test three operators in the proposed algorithms: (i) ICTDI-∇, where Φ = ∇
is the gradient operator; (ii) ICTDI/IDTDI-W , where Φ = W is a tight framelet transform
constructed as in [7]; and (iii) IDTDI-BM3D, where Φ and Ψ are BM3D analysis and synthesis
operators [18]. Additionally, we test the ICTDI-BM3D algorithm for problem (2.6) and the
ADMM algorithm for problem (2.5), abbreviated as ADMM-BM3D.

We compare our results with the following existing methods: back projection (BP) using
the formula T TPT f ; cubic interpolation in the wavelet domain based on Delaunay triangula-
tion (implemented by the MATLAB routine griddata); the ADM wavelet domain inpainting
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 37

method [12] (we also apply it to Fourier domain inpainting for comparison); nonlocal TV reg-
ularization; and a Bregmanized operator splitting based Fourier domain inpainting method
[50]. We remark that although there exist many numerical methods related to the TV based
transform domain inpainting method, their results have a similar quality since they solve the
same model [13, 11, 36, 12, 45]. Here we choose ADM in [12] as a representative. All the key
parameters (regularization parameters) are tuned carefully in each method and the optimal
result is chosen to compare.

The default parameters of the proposed methods are set as follows: for ICTDI-∇, γ =
10, τ = 5 for wavelet domain inpainting and τ = 1 for Fourier domain inpainting; for
ICTDI/IDTDI-W , γ = 10, τ = 3 for wavelet domain inpainting and τ = 0.5 for Fourier
domain inpainting. For ICTDI-BM3D and IDTDI-BM3D, we set γ = 1000,patch size = 8.
To speed up the IDTDI-BM3D algorithm, first, we choose the result of BP after cubic interpo-
lation in the low frequency in the wavelet domain as initialization of u0. Second, since larger
τ corresponds to faster diffusion speed and smaller τ corresponds to higher inpainting quality
(which will be addressed in section 4.4), we choose to decrease the noise estimate τ during
iteration. For wavelet domain inpainting, we set τ = [20, 15, 10, 5, 2, 1]. Sixty iterations are
performed for each τ > 1 and τ = 1 for the rest iterations. Meanwhile, for Fourier domain
inpainting, we set τ = [10, 8, 5, 2, 1, 0.5]. Sixty iterations are performed for each τ > 0.5 and
τ = 0.5 for the rest iterations.

Following [12], for iterative methods ADM, ICTDI-∇, and ICTDI/IDTDI-W , we set that
the stopping criterion as the relative error (ReErr) between the successive iterate of the re-
stored image should satisfy the following inequality:

ReErr =
‖uk+1 − uk‖2

‖uk+1‖2
< 10−5.

Note that this stopping criterion is widely used in image restoration problems [33, 37, 52].
For NLTV and IDTDI-BM3D, we set maximum iteration but we do not use ReErr. The
first reason is the ReErr curves are oscillating for these two methods. The second reason is
these patch based algorithms are slow compared with other methods, including ADM, ICTDI-
∇, and ICTDI/IDTDI-W . By setting maximum iteration we can achieve a good balance of
image reconstruction quality and computational time. The maximum iterations of NLTV and
IDTDI-BM3D are set as 200 and 500, respectively, which can almost ensure the numerical
convergence in our experiments.

All the experiments are performed underWindows 8 and MATLAB R2012a with Intel Core
i7-4500 CPU@1.80GHz and 8GB memory. The programming language is mixed MATLAB
and C for ICTDI-BM3D, IDTDI-BM3D, ADMM-BM3D, and NLTV [50], while it is MATLAB
for all the other algorithms.

4.2. Wavelet domain inpainting. In Figures 3–5 we test the three images Slope, Camera-
man, and Barbara in Figure 1 with 50% wavelet coefficient missing selected by mask in Figure
2(a). We display the wavelet inpainting results by eight methods: BP, cubic interpolation,
ADM [12], ICTDI-∇, ICTDI/IDTDI-W , and IDTDI-BM3D. Note that in Figures 3–5, the
second and fourth rows show the zoomed regions (marked in Figure 1 by red rectangles) in
the first and third rows correspondingly.
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38 FANG LI AND TIEYONG ZENG

(a) PSNR=6.81dB (b) PSNR=22.67dB (c) PSNR=34.44dB

(d) (e) (f)

(g) PSNR=34.33dB (h) PSNR=35.84dB (i) PSNR=47.37dB

(j) (k) (l)

Figure 3. Wavelet domain inpainting for Slope with mask in Figure 2(a), sparsity = 50%. (a) BP; (b) cubic
interpolation: time = 0.02s; (c) ADM [12]: iteration = 485, time = 8.75s; (d)–(f) the zoomed regions of (a)–
(c), respectively; (g) ICTDI-∇: iteration = 414, time = 5.64s; (h) ICTDI/IDTDI-W: iteration = 1230, time
= 58.78s; (i) IDTDI-BM3D: iteration = 500, time = 410.88s; (j)–(l) the zoomed regions of (g)–(i), respectively.
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NEW ALGORITHM FOR TRANSFORM DOMAIN INPAINTING 39

(a) PSNR=8.64dB (b) PSNR=22.12dB (c) PSNR=24.64dB

(d) (e) (f)

(g) PSNR=24.47dB (h) PSNR=24.85dB (i) PSNR=26.65dB

(j) (k) (l)

Figure 4. Wavelet domain inpainting for Cameraman with mask in Figure 2(a), sparsity = 50%. (a)
BP; (b) cubic interpolation: time = 0.02s; (c) ADM [12]: iteration = 596, time = 10.84s; (d)–(f) the zoomed
regions of (a)–(c), respectively; (g) ICTDI-∇: iteration = 518, time = 7.30s; (h) ICTDI/IDTDI-W: iteration
= 1500, time = 73.17s; (i) IDTDI-BM3D: iteration = 500, time = 378.98s; (j)–(l) the zoomed regions of (g)–(i),
respectively.
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(a) PSNR=8.55dB (b) PSNR=23.97dB (c) PSNR=24.03dB

(d) (e) (f)

(g) PSNR=24.14dB (h) PSNR=24.60dB (i) PSNR=30.28dB

(j) (k) (l)

Figure 5. Wavelet domain inpainting for Barbara with mask in Figure 2(a), sparsity = 50%. (a) BP;
(b) cubic interpolation: time = 0.02s; (c) ADM [12]: iteration = 594, time = 10.70s; (d)–(f) the zoomed
regions of (a)–(c), respectively; (g) ICTDI-∇: iteration = 564, time = 8.16s; (h) ICTDI/IDTDI-W: iteration
= 1608, time = 79.02s; (i) IDTDI-BM3D: iteration = 500, time = 391.86s; (j)–(l) the zoomed regions of (g)–(i),
respectively.
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From Figures 3(a)–5(a), the results of BP, we observe that much information is lost in
the pixel domain. In the cubic interpolation method displayed in Figures 3(b)–5(b), we only
interpolate the low frequency in the wavelet domain, and then apply BP to reconstruct the
image. The results seem much better than direct BP. Low frequency information is almost
recovered. However, the high frequency information along the edges in Figure 3(b), the fine
strutures in Figure 4(b), and the texture patterns in Figure 5(b) are poorly recovered. Since
high frequency and low frequency components are very different, we remark that using cubic
interpolation on the high frequency component is not helpful for recovering high frequency
information. ADM and the proposed ICTDI-∇ are both solving the TV wavelet domain
inpainting model, and so similar results with similar peak signal-to-noise ratio (PSNR) values
are obtained; see Figures 3(c)–5(c) and Figures 3(g)–5(g). The high frequency parts are
much better recovered by TV based methods than by cubic interpolation and also higher
PSNR values are reported. However, the drawbacks are also apparent, especially through the
zoomed rectangle regions. For example, the horizontal edge in Slope is not recovered, and the
fine structures of Cameraman and the textures of Barbara are oversmoothed. As displayed in
Figures 3(h)–5(h), the proposed ICTDI/IDTDI-W algorithm has slightly better restoration
quality than TV based methods ADM and ICTDI-∇ with about 0.5 dB higher PSNR values
on average. Observing the zoomed regions, we find that the horizontal edge in Slope is fully
recovered and more textures in Barbara are recovered by ICTDI/IDTDI-W . The results of
IDTDI-BM3D are displayed in Figures 3(i)–5(i) and seem quite good in the above mentioned
clues. The edges, fine strutures, and textures are far better recovered than in other methods.
In terms of PSNR, IDTDI-BM3D achieves about 11.53dB in Slope, 1.8dB in Cameraman, and
5.68dB in Barbara higher than the second best algorithm IDTDI-W . We remark that BM3D
is a patch based method. So if more similar patches can be found in the image, the restoration
quality will be better. That is why it enhances so much PSNR in Slope and Barbara.

4.3. Fourier domain inpainting. In Figures 6–8, we test three images Slope, Cameraman,
and Barbara with 30.72% known Fourier coefficients selected by mask in Figure 2(b). We dis-
play the Fourier inpainting results by six methods: BP, ADM, NLTV and the proposed algo-
rithms ICTDI-∇, ICTDI/IDTDI-W , and IDTDI-BM3D. Again, the second and fourth rows in
Figures 6–8 show the zoomed regions of the results in the first and third rows correspondingly.

As shown in Figures 6–8, the results of direct BP have the poorest visual quality and
lowest PSNR values. Among all, the proposed IDTDI-BM3D algorithm achieves the best
visual quality and the highest PSNR values. In terms of PSNR, IDTDI-BM3D achieves about
12.45dB in Slope, 0.76dB in Cameraman, and 1.99dB in Barbara higher than the second
best algorithm. Note that for Cameraman, ADM and ICTDI-∇ also have similar PSNR
values and visual quality. ICTDI/IDTDI-W is slightly better than ADM and ICTDI-∇, in
which the PSNR values are about 0.3dB higher on average. However, the artifacts of ADM,
ICTDI-∇, and ICTDI/IDTDI-W are apparent in both Slope and Barbara, for instance, the
“staircase” effect in Slope, oversmoothness of textures in Barbara, and texture-like artifacts
on Barbaras face. For Barbara, NLTV performs much better than ADM, ICTDI-∇, and
ICTDI/IDTDI-W ; see the textures on Barbara, for example.

To further illustrate the effectiveness of IDTDI-BM3D, in Figure 9, we compare it with
ICTDI-BM3D for solving problem (2.6) and ADMM-BM3D for solving problem (2.5). In all
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(a) PSNR=22.56dB (b) PSNR=41.80dB (c) PSNR=37.64dB

(d) (e) (f)

(g) PSNR=42.21dB (h) PSNR=42.45dB (i) PSNR=54.90dB

(j) (k) (l)

Figure 6. Fourier domain inpainting for Slope with mask in Figure 2(b), sparsity = 30.72%. (a) BP; (b)
ADM [12]: iteration = 280, time = 6.52s; (c) NLTV [50]: iteration = 200, time = 452.83s; (d)–(f) the zoomed
regions of (a)–(c), respectively; (g) ICTDI-∇: iteration = 250, time = 4.05s; (h) ICTDI/IDTDI-W: iteration
= 591, time = 42.08s; (i) IDTDI-BM3D: iteration = 500, time = 426.78s; (j)–(l) the zoomed regions of (g)–(i),
respectively.
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(a) PSNR=21.89dB (b) PSNR=32.62dB (c) PSNR=37.49dB

(d) (e) (f)

(g) PSNR=32.54dB (h) PSNR=32.86dB (i) PSNR=38.25dB

(j) (k) (l)

Figure 7. Fourier domain inpainting for Cameraman with mask in Figure 2(b), sparsity = 30.72%. (a)
BP; (b) ADM [12]: iteration = 356, time = 8.03s; (c) NLTV [50]: iteration = 200, time = 446.38s; (d)–(f) the
zoomed regions of (a)–(c), respectively; (g) ICTDI-∇: iteration = 402, time = 6.81s; (h) ICTDI/IDTDI-W:
iteration = 768, time = 54.59s; (i) IDTDI-BM3D: iteration = 500, time = 399.75s; (j)–(l) the zoomed regions
of (g)–(i), respectively.

D
ow

nl
oa

de
d 

05
/2

8/
18

 to
 2

19
.2

28
.1

46
.1

48
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

44 FANG LI AND TIEYONG ZENG

(a) PSNR=21.84dB (b) PSNR=26.12dB (c) PSNR=32.23dB

(d) (e) (f)

(g) PSNR=26.09dB (h) PSNR=26.97dB (i) PSNR=34.22dB

(j) (k) (l)

Figure 8. Fourier domain inpainting for Barbara with mask in Figure 2(b) sparsity = 30.72%. (a) BP; (b)
ADM [12]: iteration = 488, time = 11.27s; (c) NLTV [50]: iteration = 200, time = 458.64s; (d)–(f) the zoomed
regions of (a)–(c), respectively; (g) ICTDI-∇: iteration = 466, time = 7.98s; (h) ICTDI/IDTDI-W: iteration
= 732, time = 53.58s; (i) IDTDI-BM3D: iteration = 500, time = 415.64s; (j)–(l) the zoomed regions of (g)–(i),
respectively.
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(a) PSNR=32.69dB (b) PSNR=32.28dB (c) PSNR=34.26dB

(d) (e) (f)

Figure 9. Fouier domain inpainting for Barbara with mask in Figure 2(b), sparsity = 30.72%, iteration
= 3000. (a) ICTDI-BM3D; (b) ADMM-BM3D; (c) IDTDI-BM3D; (d)–(f) the zoomed regions of (a)–(c),
respectively.

three methods, the BM3D frame is used as a regularization operator. We iterate 3000 times
for each method to ensure convergence. We observe that IDTDI-BM3D achieves higher PSNR
than ICTDI-BM3D and ADMM-BM3D. In addition, IDTDI-BM3D takes less computational
time at each iteration than the other two (about 1/2 of ICTDI-BM3D and 1/8 of ADMM-
BM3D). In both algorithms ICTDI-BM3D and ADMM-BM3D, the operator (ΦTΦ + I)−1 is
unavoidable. As is analyzed in subsection 2.3, ΦTΦ+ I is ill-conditioned, which increases the
computational complexity and numerical instability of both algorithms. In contrast, IDTDI-
BM3D avoids this problem and the numerical implementation is more efficient and stable.
Moreover, as is shown in (2.18), which is the equivalent form of algorithm IDTDI-BM3D, the
BM3D filter is one step of the algorithm. Hence we can make use of the high efficient source
code of the BM3D filter provided by the authors to speed up the whole algorithm. Therefore,
we prefer IDTDI-BM3D in this paper. We remark that one advantage of ADMM over the
quadratic penalty method is that the former avoids having to let the penalty parameter go
to infinity. On the other hand, ADMM depends heavily on the right choice of the step size
parameter and some step size strategies have been proposed which can speed up the compu-
tation dramatically; see [25] and references therein. Moreover, there exist many algorithms
such as PDHG [10], related to ADMM, which avoid the matrix inversions. These speeding-up
methods are not considered here.

To illustrate the convergence behavior of IDTDI-BM3D and the other six compared meth-
ods ADM, NLTV, ICTDI-∇, ICTDI/IDTDI-W , ICTDI-BM3D, and ADMM-BM3D, we plot
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Figure 10. Convergence behavior. (a) PSNR versus iteration of IDTDI-BM3D algorithm corresponding
to the test in Figures 3–5 and Figures 6–8; (b) PSNR versus iteration of seven iterative methods for Fourier
domain inpainting including ADM, NLTV, ICTDI-∇, ICTDI/IDTDI-W , ICTDI-BM3D, ADMM-BM3D, and
IDTDI-BM3D.

the curves of PSNR as functions of iteration number in Figure 10. For all the methods, the
iteration is fixed as 3000, which is large enough to ensure the numerical convergence. In Fig-
ure 10(a), we display the PSNR curves of IDTDI-BM3D corresponding to the test images in
Figures 3–5 and Figures 6–8. We observe that all the curves are increasing very fast at the
beginning. The step of PSNR curves at the beginning iterations is caused by varying param-
eter τ . That is, when τ becomes smaller, there will be a sharp increment of PSNR. In Figure
10(b), the test image is Barbara as in Figure 8. Figure 10(b) shows that for all methods, the
PSNR curves are almost increasing. The three BM3D involved algorithms (ICTDI-BM3D,
ADMM-BM3D, and IDTDI-BM3D) and NLTV achieve much higher PSNR values than the
other three (ADM, ICTDI-∇, and ICTDI/IDTDI-W ). Among all, IDTDI-BM3D achieves the
highest PSNR value.

4.4. Computational time and effect of parameters. In Figures 3–5 and Figures 6–8,
we report the computational time of each method. For wavelet domain inpainting, cubic
interpolation is not an iterative method and is very fast. About 0.02 second is taken for cubic
interpolation for a 256×256 image. TV inpainting model based algorithms ADM and ICTDI-
∇ are the fastest in the iteration type methods which take about 10 seconds for 500 iterations.
Actually, ICTDI-∇ is slightly faster than ADM, since in each iteration ADM needs to update
two extra Lagrangian multiplier variables. On average, ICTDI/IDTDI-W takes about 1400
iterations with 70 seconds in wavelet domain inpainting and it takes around 700 iterations
with 50 seconds in Fourier domain inpainting for a 256×256 image. NLTV and IDTDI-BM3D
are more time-consuming than others. On average, NLTV takes about 450 seconds for 200
iterations and IDTDI-BM3D takes about 410 seconds for 500 iterations. Note that the CPU
time of our algorithms can still be reduced by including some parallel computing techniques
or stop before convergence once the satisfactory result has been obtained.
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(a) PSNR=29.38dB (b) PSNR=30.33dB (c) PSNR=32.34dB

(d) (e) (f)

(g) PSNR=33.97dB (h) PSNR=33.83dB (i) PSNR=34.26dB

(j) (k) (l)

Figure 11. The effect of parameter τ in IDTDI-BM3D (Fourier domain inpainting for Barbara with mask
in Figure 2(b), sparsity = 30.72%), iteration = 3000. (a) τ = 10; (b) τ = 8; (c) τ = 5; (d)–(f) the zoomed
regions of (a)–(c), respectively; (g) τ = 2; (h) τ = 1; (i) varying τ ; (j)–(l) the zoomed regions of (g)–(i),
respectively.
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Figure 12. PSNR versus iteration for different choice of parameter τ by applying IDTDI-BM3D on Barbara
Fourier domain inpainting.

In our algorithms, there are two parameters: τ and γ. The proposed algorithms are not
sensitive to γ. Indeed, τ is the key parameter to control the restoration quality and convergence
speed. For instance, we test IDTDI-BM3D for Fourier domain inpainting problem on Barbara
with different choices of τ . We compare the fixed parameter setting τ = 10, 8, 5, 2, 1 and
varying parameter setting, respectively. The resulting images and PSNR curves are shown in
Figures 11 and 12. We observe in Figure 11 that τ controls the smoothness of the restored
image. When τ is bigger, the result is smoother. Figures 11(a)–11(b) show that bigger τ
causes oversmoothing of textures. The results in Figures 11(c), 11(g)–11(i) are similar in
visual aspect. However, with varying parameter, the proposed algorithm IDTDI achieves a
higher PSNR value than others. In Figure 12, we display the PSNR versus iteration curves
for different τ . It is clear that all the curves are almost increasing. We observe that there
is a trade-off between the image inpainting quality and the convergence speed. In general,
smaller τ leads to higher inpainting quality but slower inpainting speed. Meanwhile, we
observe in the experiments that there is an upper limit of inpainting quality when μ is fixed.
As an example, Figure 12 shows that the optimal performance is achieved for τ = 2 and
τ = 1 when τ is fixed. It implies that τ = 2 is small enough to gain the best inpainting
quality, so it is not necessary to choose τ smaller than 2 (which will cost more computational
time than τ = 2). This optimal τ can be chosen by trail and error. Instead of choosing
an optimal τ , another parameter choosing scheme is decreasing τ gradually. This varying τ
setting works like this: at the beginning stage, larger τ leads to oversmoothing of the image
with a fast speed; then by decreasing τ gradually, more and more details will be recovered;
finally the high quality result will be obtained. On the whole, we can safely conclude that
the setting of decreasing parameter τ gradually in the algorithm IDTDI-BM3D is helpful
for enhancing convergence speed and at the same time enhancing image restoration quality.
We remark that similar behavior of varying the parameter in the penalty method has been
justified theoretically in [29].
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5. Conclusion. In this paper, we extend an existing variational model for image inpaint-
ing in the transform domain and propose two general novel algorithms ICTDI and IDTDI.
In the proposed framework, many existing regularization operators can be used, such as gra-
dient, tight frame, and the adaptive BM3D frame. Experiments and comparisons show that
the proposed IDTDI-BM3D can produce very promising results in transform domain inpaint-
ing problems. The key part of IDTDI is just the replacement of ΦT by Ψ in ICTDI. This
replacement can be considered when the subproblems involving ΦTΦ are not easy to solve.
The effectiveness of this replacement needs to be justified in other applications in image pro-
cessing. In future work, we will generalize our framework to other image processing problems,
for instance, the image deblurring and inpainting problem (2.4) and the image segmentation
problem. With the idea of decoupling, we can utilize the most efficient regularization schemes
such that it is very possible to enhance the recovered image quality and segmentation accuracy.
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