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ABSTRACT
In this article, we propose a novel unsupervised change detection
method for synthetic aperture radar (SAR) images. First, we gen-
erate a difference image as a weighted average of a log-ratio
image and a mean-ratio image, which has the advantage of
enhancing the information of changed regions and restraining
the information of unchanged background regions simulta-
neously. Second, we propose a variational soft segmentation
model based on non-differentiable curvelet regularization and
L1-norm fidelity. Numerically, by using the split Bregman techni-
que for curvelet regularization term and reformulating the L1-
norm fidelity as weighted L2-norm fidelity, we get an effective
algorithm in which each sub-problem has a closed-form solution.
The numerical experiments and comparisons with several existing
methods show that the proposed method is promising, with not
only high robustness to non-Gaussian noise or outliers but also
high change detection accuracy. Moreover, the proposed method
is good at detecting fine-structured change areas. Especially, it
outperforms other methods in preserving edge continuity and
detecting curve-shaped changed areas.
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1. Introduction

Image change detection aims to detect the changed areas in images of the same scene
taken at different time instances (Radke et al. 2005). In recent years, there has been a
growing interest in developing change detection techniques for the analysis of multi-
temporal remote-sensing images due to its wide range of applications in environmental
monitoring, agricultural surveys, urban studies, forest monitoring, etc. (Bruzzone and
Prieto 2000). In particular, change detection in synthetic aperture radar (SAR) images is
an attractive topic since SAR sensors are independent of atmospheric and sunlight
conditions. However, SAR images change detection is more difficult than optical ones
due to the presence of speckle noise.

The existing change detection methods can be categorized as either supervised or
unsupervised methods. The former is based on supervised classification and requires
some ground truth data to train the classifier, while the latter performs change
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detection directly on the two multitemporal images without any other additional
information (Celik 2009). Although the supervised approach exhibits some advantages
over the unsupervised one, the generation of an appropriate ground truth is usually a
difficult and expensive task (Bruzzone and Prieto 2000). Therefore, the designing of
effective unsupervised change detection methods is fundamental in many application
areas when the ground truth is unavailable. In this article, we focus on unsupervised
methods.

In general, there are mainly three steps in unsupervised change detection for remote-
sensing images. The first step is pre-processing including noise reduction, co-registra-
tion, and geometric correction (Leprince et al. 2007). Regarding SAR, the registration in
general is done automatically. An advanced filtering approach is proposed in Schmitt,
Wendleder, and Hinz (2015) for the joint pre-processing of multiple input images, which
is shown to improve the radiometric accuracy while preserving the geometric resolution
of SAR images. In this article, we assume the first step has been carried out on the
multitemporal images before applying any change detection method.

The second step is generating difference image between the multitemporal images.
In the difference image, it is required that the changed areas and unchanged areas are
significantly different. Basically, there are two methods to produce difference images
(Rignot and van Zyl 1993; Bujor et al. 2004). One is differencing, in which the difference
image is produced by subtracting the intensity of the two multitemporal images pixel by
pixel. The other is ratioing, in which the difference image is generated by applying ratio
operator on the two multitemporal images pixel by pixel. In the case of SAR images, due
to the multiplicative nature of speckle noise, the difference image is usually taken as the
logarithmic or a mean scale of the ratio image, which are called log-ratio and mean-
ratio, respectively (Inglada and Mercier 2007). Note that a detailed explanation of log-
ratio and mean-ratio will be given in the following context. Both log-ratio and mean-
ratio difference image are robust to calibration error and speckle noise. Based on log-
ratio and mean-ratio, some other kind of difference images are proposed for SAR
images. A wavelet fusion technique is introduced to generate the difference image as
a fusion of the basic log-ratio and mean-ratio images (Gong, Zhou, and Ma 2012). A
robust difference image is constructed by the weighted average of pixel similarity and
patch similarity measured by symmetrized log-ratio (Zhang, Chen, and Meng 2013). In
Zheng et al. (2014), a new difference image is generated by combining the differencing
image processed by mean filter and log-ratio image processed by median filter.

In the third step, changes are identified by analysing the difference image with some
unsupervised classification method. In this step, changed areas and unchanged areas are
classified. The classification method can be applied either on the difference image
directly or on the features extracted from the difference image.

The following methods are applied on the difference image directly. In Bruzzone and
Prieto (2000), two automatic thresholding methods based on the Bayes theory are
proposed, which are expectation-maximization (EM) based thresholding and Markov
random fields (MRF) based thresholding. In Zhang, Chen, and Meng (2013), an SAR
image change detection method based on graph-cut and generalized Gaussian model is
proposed. In Zheng et al. (2014), the classical k-means clustering method with two
classes is applied to the combined difference image. The variants of fuzzy c-means
(FCM) clustering method incorporating local information (Krinidis and Chatzis 2010) are
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adopted in Gong, Zhou, and Ma (2012). In Gong et al. (2014), a fuzzy clustering with a
modified MRF energy function is proposed for change detection.

By contrast, some other methods include a feature selection process and apply
classification on the features instead of on the original difference image. In Bovolo
and Bruzzone (2005), undecimated discrete wavelet transform (UDWT) is used to extract
multiresolution features from the log-ratio difference image and the final change
detection map according to a scale-driven fusion strategy. The principal component
analysis (PCA) technique has been used in Celik (2009) to extract the features from the
overlapping patches of the difference image, and then k-means is used to clustering the
features into two classes. In Celik and Ma (2010), dual-tree complex wavelet transform
(DT-CWT) has been applied on the two multitemporal images to get the multiresolution
difference image, and binary change detection has been conducted on each subband
and then they are fused as the final change map. In Celik and Ma (2011), UDWT is
applied on original difference image to extract multiresolution difference images, and
then a two-phase vectored-valued Chan–Vese model (Chan and Vese 2001) is used to
segment the vector-valued difference image. An unsupervised change detection from
multichannel SAR data by Markovian data fusion is proposed in Moser and Serpico
(2009).

The above-mentioned methods provide impressive change detection results with
relatively high detection accuracy. However, their performance is still limited in handling
non-Gaussian noise, outliers, and detecting fine-structured areas. To overcome this
limitation, in this article, we propose a new segmentation method based on curvelet
transform and L1-norm minimization.

Our motivation comes from the following observations. First, curvelet transform is
very efficient in encoding images with both smooth regions and edges, which is widely
used in image processing. Indeed, curvelet-based approaches for change detection are
considered in Schmitt, Wessel, and Roth (2009, 2014), which shows that curvelet trans-
form is a powerful tool to describe fine-structured change areas. Hence we choose
curvelet regularization in the proposed segmentation method. It is notable that our
method is very different from the methods in Schmitt, Wessel, and Roth (2009, 2014)
since no segmentation model is involved in the latter. Second, L1-norm fidelity is proved
to be more robust to non-Gaussian noise and outliers than its L2-norm counterpart,
which is widely used in image restoration problem (Chan and Esedoglu 2005; Guo, Li,
and Ng 2009; Jung, Kang, and Kang 2014). This motivates us to use L1-norm in the
proposed segmentation model to fitting the difference image, which contains non-
Gaussian noise and outliers.

Since the performance of image change detection depends on both the quality of the
difference image and the accuracy of the classification method, we build our method by
considering a new difference image and a new classification method. The contribution
of this work is two-fold. First, we produce a difference image as a weighted average of
the log-ratio image and the mean-ratio image, which can enhance the information of
changed regions and at the same time restrain the information of unchanged back-
ground regions. Second, we propose a new variational soft segmentation model based
on curvelet regularization and L1-norm fidelity. In the numerical aspect, to overcome the
non-smoothness of the energy functional, split Bregman technique (Goldstein and Osher
2009) is used for curvelet regularization term, and meanwhile the L1-norm fidelity is
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reformulated as weighted L2-norm fidelity. Then we derive an effective algorithm in
which each sub-problem has closed-form solution.

2. Curvelet transform and Chan–Vese model

Before the presentation of our technique, in this section we describe some elements
useful for our purpose.

2.1. Curvelet transform

The curvelet transform (Candes and Donoho 2004; Candes et al. 2006) was developed to
overcome inherent limitations of traditional multiscale representations such as wavelets.
The curvelet transform is a multiscale pyramid with many directions and positions at
each length scale and needle-shaped elements at fine scales. Curvelets are indexed by
three parameters: the scale 2–j, j = 0,1,. . .; the equispaced sequence of rotation angle θℓ
with ℓ = 0‚1‚. . . such that 0 ≤ θℓ <2π; the spatial translation parameters k1, k2 are integers.
Assume φj(x) is the ‘mother’curvelet; see Candes et al. (2006) for detailed construction of
φj. With these notations, the curvelets as a function of x = (x1,x2) at scale 2–j, orientation
θℓ, and position xðj;,Þk ¼ R$1

θl
ðk12$j; k22$lÞ is given by

φj;,;kðxÞ ¼ φj Rθ, x $ x j;,ð Þ
k

! "! "
; (1)

where Rθ is the rotation

cos θ sin θ
$ sin θ cos θ

# $
: (2)

A curvelet coefficient cj;,;k is then simply the inner product between an element ƒ ∈ L2(∙2)
(Rn denotes the n-dimensional Euclidean space and L2(∙2) denotes the space of square-
integrable functions.) and a curvelet φj;,;k :

cj;,;k ¼ hf ;φj;,;ki ¼
ð

%R2
fðxÞφj;,;kðxÞdx (3)

Here hi denotes inner product of two functions, which is defined by the last formula in

(3) and φj;,;kðxÞ denotes the conjugate of φj;,;kðxÞ. The family of curvelet functions
fφj;,;kðxÞg forms a tight frame of L2(•2) such that an arbitrary function ƒ ∈ L2(•2) can be
expanded by a series of curvelets, that is, we have the reconstruction formula:

f ¼
X

j;,;k

f ;φj;,;k

& '
φj;,;k: (4)

For simplicity, we denote the curvelet transform as operator C, that is, Cf represents all
the curvelet coefficients fcj;,;kg of function f. We denote CT as the conjugate operator of
C, which is the curvelet reconstruction operator. By the perfect construction property of
curvelet transform, the following equality holds:

CTC ¼ I; (5)

where I denotes the identity transform.
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The advantage of curvelet transform is that it is very efficient in encoding images with
both smooth regions and edges. To make use of this advantage, curvelet-based
approaches for change detection are considered in Schmitt, Wessel, and Roth (2009,
2014). In this article, we will introduce curvelet regularization in our segmentation model
for change detection in order to well detect the fine-structured change areas. Note that
the software package CurveLab implements the curvelet transform and is available at
http://www.curvelet.org.

2.2. Chan–Vese model

One of the most well known variational segmentation model is the Chan–Vese model
(Chan and Vese 2001). Let us recall the following two-phase Chan–Vese model in level
set formulation:

min
!;c1;c2

ð

Ω
j!Hð!Þjdx þ μ

ð

Ω
Hð!Þdx þ λ1

ð

Ω
jI$ c1j2Hð!Þdx

þλ2

ð

Ω
jI$ c2j2ð1$ Hð!ÞÞdx

8
>><

>>:

9
>>=

>>;
; (6)

where I:Ω ⊂ ∙2→ ∙ is the given image, c1 and c2 are constants, ! : Ω ! % is the level set
function, H(ϕ) is the Heaviside function satisfying

Hð!Þ ¼ 0; if ! ' 0
1; otherwise

(
: (7)

λ1, λ2, and µ are fixed positive parameters. The final segmentation curve is given by
ϕ = 0. The two classes are ϕ > 0 and ϕ < 0. The first term in the energy (6) is
regularization term, which requires that the segmentation boundary should be as
short as possible. The second term requires that the area of the region ϕ > 0 should
be as small as possible. The last two terms are fidelity terms, which require that the
image should be approximated by constants c1 and c2 in each region. In other words,
the Chan–Vese model seeks a piecewise constant approximation of the image with
smooth boundary. Numerically, negative Gradient Descent method is used to solve the
associated Euler–Lagrange equation for level set function ϕ. Since this equation is highly
nonlinear, the numerical scheme is not easy to implement and converges slowly due to
the small size of the time step, see Chan and Vese (2001) for more details.

The soft version of the Chan–Vese model (Chan, Esedoglu, and Nikolova 2006;
Bresson et al. 2007) is

min
0' u' 1;c1;c2

ð

Ω
j!ujdx þ λ1

ð

Ω
jI$ c1j2udx

þλ2

ð

Ω
jI$ c2j2ð1$ uÞdx

8
>><

>>:

9
>>=

>>;
; (8)

in which a soft membership function u ranged in [0,1] is used to replace the binary
Heaviside function H(ϕ) in the Chan–Vese model. Note that the second term in the
ordinal Chan–Vese model is not considered here since its function is negligible in many
cases. It can be explained as that the probability of x belonging to one class is u(x) and
the probability in another class is 1 – u(x). The advantage of the soft version over the
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original Chan–Vese model is that the soft version (8) is convex with respect to u such
that some efficient numerical method can be applied, while the Chan–Vese model is
non-convex with respect to ϕ.

Both the Chan–Vese model (6) and its soft version (8) give impressive segmentation
results for nearly piecewise constant images, which has been widely used in image
segmentation. Since the involved L2-norm fidelity is based on the Gaussian distribution,
(6) and (8) are robust to Gaussian noise. However, both models are not robust to non-
Gaussian noise or outliers. In SAR images change detection, the difference image suffers
from large extent of non-Gaussian noise, such that both (6) and (8) cannot achieve good
enough segmentation results. On the other hand, the total variation regularization in (8)
causes staircase effect in image processing problems (Li et al. 2007), which may affect
the accuracy in image segmentation. In this work, we propose a variant of soft Chan–
Vese model for image change detection to overcome the drawbacks and increase the
segmentation accuracy.

3. The proposed method

In this section, we propose our method for change detection with two steps. In the first
step, we generate a difference image as a combination of log-ratio image and mean-
ratio image. In the second step, we propose an unsupervised soft segmentation method
based on curvelet regularization and L1-norm fidelity.

3.1. Generation of the difference image

Given two multitemporal SAR images X1,X2:Ω→[0,255], where Ω ⊂ •2 is a rectangular
area. Note that if the given data in not in the range [0,255], a rescaling step is needed. As
mentioned in Section 1, SAR images are polluted by multiplicative speckle noise. With
the logarithm operator, the multiplicative noise can be transformed into additive noise
such that the following log-ratio difference image is widely used:

ln
X2

X1

))))

)))) ¼ lnX2 $ lnX1j j: (9)

To avoid the intensity to be zero, as in Zheng et al. (2014), we define

Dl ¼ ln
X2 þ 1
X1 þ 1

))))

)))): (10)

Because of the multiplicative nature of speckle noise, the classical approach consists in
using the ratio of the local means in the neighbourhood of each pair of homologous
pixels. Here ‘local means’ represents the result by applying mean filter on the image. The
mean-ratio difference image is defined as (Inglada and Mercier 2007)

Dm ¼ 1$min
M1

M2
;
M2

M1

# $
; (11)

where M1, M2 denote the local mean value of X1, X2, respectively. This difference image
assumes that a change in the scene will appear as a modification of the local mean value
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of the image. This measure is also robust to speckle noise. See Inglada and Mercier
(2007) for more details.

Both of the two difference images have their own advantages and disadvantages
(Rignot and van Zyl 1993; Gong, Zhou, and Ma 2012). The advantage of the log-ratio
difference image is that the unchanged areas seem flat. However, the changed areas are
weakened by logarithm operator such that it may detect fewer changed pixels than
actually changed ones. In contrast, the advantage of mean-ratio difference image is that
the changed areas seem to include almost all the real changed pixels. However, some
unchanged areas may also be mistakenly detected as changed areas since the ratio
operator may emphasize the differences of low intensities in the multitemporal images
(e.g. 200/20 = 10, 20/2 = 10). To combine the advantages of log-ratio and mean-ratio
and decrease their disadvantages, in this article, we propose to combine them by
weighted average:

D ¼ 0:4Dm þ 0:6Dl: (12)

The weights 0.4 and 0.6 are chosen by trial and error. Experimental results show that this
combined difference image works well in our proposed method. Note that we have
rescaled D1 by a factor of 2 since the range of D1 is a little larger than Dm. Note that in
Zheng et al. (2014) the combined difference image is also defined by a weighted
average of two kinds of difference images, which are obtained by applying median
filter on D1 and applying median filter on DS = |X2 – X1|. It is obvious that the proposed
combined difference image is different from that in Zheng et al. (2014).

3.2. Unsupervised soft segmentation

As mentioned in Section2, the advantage of the soft Chan–Vese model (8) over the
original Chan–Vese model (6) is the convexity with respect to u, which gives more
choices in numerical schemes. However, due to the speckle noise in SAR images, the
difference image contains a large amount of non-Gaussian noise and outliers. In addi-
tion, the staircase effect of total variation regularization term causes the loss of seg-
mentation accuracy. Hence model (8) is not good enough in dealing with segmentation
of SAR difference image.

To overcome the above-mentioned two drawbacks of the soft Chan–Vese model, we
propose a variant based on (8) as follows, named curvelet L1 model (C_L1):

min
0' u' 1;c1;c2

ð

Ω
Cuj jdx þ λ1

ð

Ω
I$ c1j judx

þλ1λ2

ð

Ω
I$ c2j j 1$ uð Þdx

8
>><

>>:

9
>>=

>>;
; (13)

where u is the soft membership function, I = D is the difference image (12), λ1λ2 and λ2
are fixed positive parameters, C denotes the curvelet transform as described in Section 2,
and Cu denotes the curvelet transform coefficients of u. Note that in the fidelity terms,
we set the coefficients to be λ1 and λ1 λ2, respectively, in order to simplify the
computation when deriving the algorithm in the next section, Section 3.3.1.

There are two novelties in the proposed model. On the one hand, curvelet regular-
ization is used to replace the total variation regularization in (8), which gives nearly
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optimal sparse representation of images with smooth regions and edges. On the other
hand, L1-norm fidelity is used instead of L2-norm to measure the distance of the image
intensity with the class centres c1 and c2. It is motivated by the fact that L1-norm is more
robust to non-Gaussian noise and outliers, which is widely used in image restoration
problem (Chan and Esedoglu 2005; Guo, Li, and Ng 2009; Jung, Kang, and Kang 2014).

3.3. Numerical algorithm

In this section, we introduce an effective algorithm to solve the proposed model based
on the popular alternating split Bregman (ASB) method (Goldstein and Osher 2009). First
we give a brief introduction on the ASB method. Assume that H and |G |are convex
functions and H is differentiable (here |∙ |is absolute value operator). Let us consider the
problem:

min
u;d

jdjþ HðuÞ s:t:GðuÞ ¼ d: (14)

Let us introduce another variable b and define

F u;d;bð Þ ¼ dj jþ H uð Þ þ μ

2
G uð Þ $ dþ bk** **2

2; (15)

where µ is a positive parameter. In fact, F(u,b,d) is equivalent to the augmented
Lagrangian of the original constrained problem (14). Then the ASB algorithm for this
problem is given by the following iteration scheme:

ukþ1 ¼ argmin
u

F u;dk;bk
! "

;

dkþ1 ¼ argmin
d

F ukþ1;d;bk
! "

;

bkþ1 ¼ bk þ G ukþ1+ ,
$ dkþ1:

It has been proved that ASB is equivalent to the classical alternating direction method of
multipliers (ADMM) and the convergence is proved in Boyd et al. (2011) under weak
conditions.

In the proposed C_L1 model (13), the functional is non-differentiable with respect to
variables u, c1, and c2. As mentioned above, ASB can be used to deal with the non-
differentiable terms by introducing new variables. In this way, three additional variables
are needed corresponding to all the three L1-norm involved terms. Actually, we have a
simpler approach to handle the two non-differentiable L1-norm fidelity terms. We
rewrite them as weighted L2-norm terms and get the following approximate problem:

min
u;c1;c2

ð

Ω
Cuj jdx þ λ1

ð

Ω
w1 I$ c1j j2udx

þλ1λ2

ð

Ω
w2 I$ c2j j2 1$ uð Þdx þ χU uð Þ

8
>><

>>:

9
>>=

>>;
; (16)

where χUðuÞ is the indicator function of

U ¼ u : 0 ' u ' 1f g (17)
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and the weights are defined as

w1 ¼
1

I$ !cj j1
;w2 ¼

1
I$ !c2j j

(18)

in which !c1 and !c2 are estimated values of c1 and c2, respectively. In an iterative scheme,
!c1 and !c2 can be chosen as the values of the last iteration.

Following ASB, for the non-differentiable curvelet regularization term, we introduce
an auxiliary variable d and reformulate the above problem as a constrained problem:

min
u;c1;c2

ð

Ω
dj jdx þ λ1

ð

Ω
w1 I$ c1j j2udx

þλ1λ2

ð

Ω
w2 I$ c2j j2 1$ uð Þdx þ χU uð Þ

8
>><

>>:

9
>>=

>>;

s:t: Cu ¼ d:

(19)

The corresponding augmented Lagrangian is equivalent to

L u; c1; c2;d;bð Þ ¼

ð

Ω
dj jdx þ λ1

ð

Ω
w1 I$ c1j j2udx

þλ1λ2

ð

Ω
w2 I$ c2j j2 1$ uð Þdx

þ μ
2

ð

Ω
Cu$ dþ bj j2dx þ χU uð Þ

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

; (20)

where b is the dual variable. By utilizing ASB technique and alternating minimization
method, we get the following iteration scheme:

ckþ1
1 ¼ argmin

c1
L uk; c1; ck2;d

k;bk
! "

; (21)

ckþ1
2 ¼ argmin

c2
L uk; ckþ1

1 ; c2;dk;bk
! "

; (22)

ukþ1 ¼ argmin
u

L u; ckþ1
1 ; ckþ1

2 ;dk;bk
! "

; (23)

dkþ1 ¼ argmin
d

L ukþ1; ckþ1
1 ; ckþ1

2 ;d;bk
! "

; (24)

bkþ1 ¼ bk þ Cukþ1 $ dkþ1: (25)

In the following, we solve each sub-problem (9)–(12) in detail. For simplicity, we omit the
iteration index in the derivation.

3.3.1. Solving c1 and c2
Since the sub-problems (9) and (10) for c1 and c2 are separable, we consider them
together, that is

min
c1;c2

ð

Ω
w1 I$ c1j j2udx þ λ2

ð

Ω
w2 I$ c2j j2 1$ uð Þdx: (26)
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The first-order optimality conditions for c1 and c2 are
ð

Ω
w1 I$ c1ð Þudx ¼ 0 (27)

and
ð

Ω
w2 I$ c2ð Þudx ¼ 0; (28)

respectively. Hence it is easy to get the closed-form solutions of c1 and c2 as follows:

c1 ¼

ð

Ω
w1Iudx

ð

Ω
w1udx

; c2 ¼

ð

Ω
w2I 1$ uð Þdx

ð

Ω
w2 1$ uð Þdx

: (29)

3.3.2. Solving u
The sub-problem (11) for u is

min
0' u' 1

λ1

ð

Ω
rudx þ μ

2

ð

Ω
Cu$ dþ bj j2dx; (30)

where r :¼ w1 I$ c1j j2 $ λ2w2 I$ c2j j2. Since both the functional and the constraint are
convex, we can solve this problem exactly in two steps. First, we calculate the first order
optimality condition for u without considering the constraint, which is

λ1rþ μCT Cu$ dþ bð Þ ¼ 0; (31)

where CT is the conjugate of C. Using the perfect construction property of curvelet in (5),
we can easily deduce from the above equality that the closed-form solution of u is

u ¼ CT d$ bð Þ $ θr; (32)

where θ = λ1 /μ. Then the convex constraint 0 ≤ u ≤ 1 is applied and we get the solution
of constrained problem (30) as

u ¼ min max CT d$ bð Þ $ θr; 0
+ ,

; 1
+ ,

: (33)

3.3.3. Solving d
The sub-problem (12) for d is

min
d

ð

Ω
dj jdx þ μ

2

ð

Ω
Cu$ dþ bj j2dx: (34)

Let τ = 1/μ. It is well known that the closed-form solution of this sub-problem can be
expressed using the soft shrinkage (Goldstein and Osher 2009; Li and Zeng 2014), that is,

d ¼ S Cuþ b; τð Þ; (35)

where S is the soft shrinkage operator pointwise defined as
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Sðv; τÞ ¼
v $ τ; if v > τ
v þ τ; if v <$ τ
0 otherwise

8
<

: : (36)

Note that this sub-problem may also seem to be a denoising problem with given data
Cu+b. The thresholding τ controls the smoothness of solution d, bigger means
smoother.

Finally, combining the updating formulas (8), (29), (33), and (35), according to the
framework of ASB, the detailed C_L1 algorithm is summarized in Algorithm C_L1 as
follows:

● Initialization: u0 ¼ I0;d0 ¼ 0, b0 ¼ 0;w0
1 ¼ 1;w0

2 ¼ 1.
● For k = 0,1,2,. . ., repeat until stopping criterion is reached:

ckþ1
1 ¼

ð

Ω
wk

1Iu
kdx

ð

Ω
wk

1ukdx
; ckþ1

2 ¼

ð

Ω
wk

2I 1$ uk
+ ,

dx
ð

Ω
wk

2 1$ ukð Þdx
;

wkþ1
1 ¼ 1

I$ ckþ1
1

)) )) ; wkþ1
2 ¼ 1

I$ ckþ1
2

)) )) ;

rkþ1 ¼ wkþ1
1 I$ ckþ1

1

)) ))2 $ λ2wkþ1
2 I$ ckþ1

2

)) ))2;

ukþ1 ¼ min max CT dk $ bk
! "

$ θrkþ1; 0
! "

; 1
! "

;

dkþ1 ¼ S Cukþ1 þ bk; τ
! "

;

bkþ1 ¼ bk þ Cukþ1 $ dkþ1;

● Output: uk+1.

Note that the initial membership function is set as I° = I /max (I) valued in [0,1]. Here 0
denotes matrix with all entries equal to 0 and 1 denotes matrix with all entries equal to
1. The stopping criterion is defined as the distance of class centres in the successive
iterations are small enough, that is,

ckþ1
1 $ ck1

+ ,2 þ ckþ1
2 $ ck2

+ ,2
<"; (37)

where ε is a very small number.

3.4. Partial convergence analysis

Theoretically, by fixing w1 and w2, we can prove the partial convergence result following
the method in Zhang (2010). Let Z( ¼ u(; c(1; c

(
2;d

(;b(+ ,
be the Karush–Kuhn–Tucher
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(KKT (Boyd and Vandenberghe 2009)) point of problem (19). Then Z* satisfies the
following KKT conditions:

ð

Ω
w1 I$ c(1

+ ,
u(dx ¼ 0; (38)

ð

Ω
w2 I$ c(2

+ ,
1$ u(ð Þdx ¼ 0; (39)

θr( þ CTb( þ @χU u(ð Þ’ 0; (40)

@ d(j j$ μb(’ 0; (41)

Cu( $ d( ¼ 0; (42)

where r( ¼ w1 I$ c(1
+ ,2 þ λ2 I$ c(2

+ ,2! "
: Denote Zk ¼ uk; ck1; c

k
2;d

k;bk
! "

and
Xk ¼ uk; ck1; c

k
2

+ ,
. Then we have the following partial convergence theorem.

Theorem 1. Let fZkg1k¼1 be the sequence generated by the algorithm C_L1 for fixed w1

and w2 that satisfies the condition

lim
k!1

ðZkþ1 $ ZkÞ ¼ 0: (43)

Then any accumulation point of fZkg1k¼1 is a KKT point of constrained problem (19).
Consequently, any accumulation point of fXkg1k¼1 is a KKT point of (16).

See the proof of Theorem 1 in Appendix. Based on Theorem 1, the following claim
results immediately. Whenever fZkg1k¼1 converges, it converges to a KKT point of (19).
Note that since the minimization problem (19) is non-convex, the KKT conditions are
only necessary conditions to (19).

4. Numerical results and analysis

To demonstrate the effectiveness of the proposed SAR images change detection
method, in this section we test three data sets and compare the performance of the
following methods:

● FCM – Fuzzy c-mean clustering applied on the difference image (12);
● PCA_K – PCA and k-means based method in Celik (2009);
● CV – Soft Chan–Vese model applied on the difference image (12);
● UDWT_CV – UDWT and Chan–Vese model based method in Celik and Ma (2011);
● CDI_K – Combined difference image and k-means based method in Zheng et al.

(2014);
● FLICM – Fuzzy local information c-means clustering applied on the difference

image (12) (Gong, Zhou, and Ma 2012);
● C_L1 – Curvelet and L1-norm based change detection method proposed in this

article.
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For quantitative analysis of change detection results, we use the following performance
measures as in Rosin and Ioannidis (2003); Viera et al. (2005):

● FP – False positives, i.e. number of unchanged pixels detected as changed;
● FN – False negatives, i.e. number of changed pixels detected as unchanged;
● TP – True positives, i.e. number of changed pixels detected as changed;
● TN – True negatives, i.e. number of unchanged pixels detected as unchanged;
● FCC – Percentage correct classification defined as

FCC :¼ ðTPÞ þ ðTNÞ
ðTPÞ þ ðFPÞ þ ðTNÞ þ ðFNÞ

; (44)

which has a value in the range [0,1] and higher is better;

● Kappa coefficient (Viera et al. 2005) – a measure of agreement between two raters
who each classify N items into C mutually exclusive categories, which is defined as

κ ¼ PðaÞ $ PðeÞ
1$ PðeÞ

; (45)

where P(a) is the relative observed agreement among raters, and P(e) is the hypothetical
probability of chance agreement. If the raters are in complete agreement then к = 1. If
there is no agreement among the raters other than what would be expected by chance,
к = 0. See Viera et al. (2005) for more details.

In the comparison, we use the five measures FP, FN, FP + FN, FCC, and kappa
coefficient. Note that FP + FN is the total number of misclassified pixels.

The parameters of the proposed method C_L1 are set by trial and error. In generating
the difference image, we use 3 × 3 window to calculate the local mean of images. The
default parameters of algorithm C_L1 is set as λ2 = 1.3, τ = 0.02, θ = 0.1, ε = 10−10 In
particular, for the Bern data (see Figure 2 below), we set λ2 ¼ 1:1; τ ¼ 0:015. Note that
the thresholding τ controls the smoothness of d and thus the smoothness of the
segmentation, bigger means smoother. Here λ2 relates to the scale of two clusters.
Since the Bern data is not much noisy and the changed area is relatively smaller than
the other two test data (see Figures 1 and 3 below), relatively smaller λ2 and τ yield
better result. For the other five methods that are selected for comparison, we follow the
original papers to set the parameters. Note that PCA_K, CDI_K, and UDWT_CV give the
binary change detection map directly. However, for FCM, FLICM, and C_L1, the final
binary change detection map is obtained by thresholding the output membership
function u by 0.5.

4.1. The test data sets

In the experiments, we test three data sets of SAR images, which are cited from Gong,
Zhou, and Ma (2012). Note that the exact geographical information such as scale bars
and geographical coordinates is not provided in that paper.
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The first data set displayed in Figure 1(a,b) is two SAR images acquired by Radarsat-2
at the regions of Yellow River Estuary in China in June 2008 and June 2009, respectively,
with an area of 257 × 289 pixels. The two images Figure 1(a,b) are single-look image and

Figure 1. Multitemporal SAR images of the Yellow River Estuary. (a) Image acquired in June 2008; (b)
image acquired in June 2009; (c) the ground truth of changed areas (white indicates changed areas
and black indicates unchanged areas).

Figure 2. Multitemporal SAR images of the Bern city. (a) Image acquired in April 1999 before
flooding; (b) image acquired in May 1999 after flooding; (c) the ground truth of changed areas.

Figure 3. Multitemporal SAR images of the Ottawa city. (a) Image acquired in July 1997 during
flooding; (b) image acquired in August 1997 after flooding; (c) the ground truth of changed areas.
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four-look image, respectively, such that the speckle noise in Figure 1(a) is much heavier
than that in Figure 1(b). The huge difference level of noise makes change detection even
harder. The ground truth (reference image) of change detection is shown in Figure 1(c)
in which the changed areas are in white and unchanged areas are in black.

The second data set displayed in Figure 2(a,b) is two SAR images acquired by
European Remote Sensing 2 satellite SAR sensor over an area near the city Bern,
Switzerland, in April and May 1999 before and after flooding, respectively, with an
area of 301 × 301 pixels. The Aare valley between Bern and Thun is selected as a test
site for detecting flooded areas. The ground truth of changed areas is shown in
Figure 2(c).

The third data set displayed in Figure 3(a,b) is two SAR images acquired by the
Radarsat SAR sensor over the city of Ottawa, Canada, in July and August 1997 during
and after summer flooding, respectively, with an area of 290 × 350 pixels. There are
mainly two regions in the images, namely, land and water. The ground truth of changed
areas is shown in Figure 3(c).

4.2. Experimental results

To illustrate the advantage of the proposed difference image, we display the log-
ratio, mean-ratio, and the proposed weighted difference image in Figure 4(a–c),
respectively. In the log-ratio difference image Figure 4(a), we observe that the
unchanged areas are flatter than in the mean-ratio image Figure 4(b). On the other
hand, the changed areas indicated by mean-ratio image seems better than log-ratio
image in which the changed areas are much weakened by logarithm operator. By
taking weighted average, the difference image in Figure 4(c) keeps a relatively flat
unchanged area and an enhanced changed area, which makes it easier to classify
unchanged and changed areas.

In Figures 5, 7 and 8 and Tables 1–3, we compare the performance of the proposed
method C_L1 with five existing methods FCM, PCA_K, CV, UDWT_CV, CDI_K, and FLICM.
Remark that FCM, CV, and FLICM are applied on the difference image (12). The bold-
faced data in Tables 1–3 indicates the best performance.

Figure 4. The difference images of the Yellow River Estuary data. (a) log-ratio image; (b) mean-ratio
image; (c) the difference image using the proposed method.
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Figure 5. Change detection results of the Yellow River Estuary data obtained by different methods
after (a) FCM; (b) PCA_K; (c) CV; (d) UDWT_CV; (e) CDI_K; (f) FLICM; (g) the proposed C_L1 method.

Figure 6. The soft membership function values u for the Yellow River Estuary data during the
iteration process of Algorithm C_L1 after (a) 10 iterations; (b) 50 iterations; (c) 100 iterations; (d) 200
iterations; (e) 300 iterations; (f) 388 iterations.
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Figure 5 and Table 1 show the results and performance measures on the Yellow River
Estuary data, respectively. As mentioned before, the multitemporal images are suffered
from different level of noise and the difference image is very noisy; see Figure 4. The
detection of change is much more difficult in this case. The result of FCM in Figure 5(a)

Figure 8. Change detection results of the Ottawa data by different methods after (a) FCM; (b)
PCA_K; (c) CV; (d) UDWT_CV; (e) CDI_K; (f) FLICM; (g) the proposed C_L1 method.

Figure 7. Change detection results of the Bern data by different methods after (a) FCM; (b) PCA_K;
(c) CV; (d) UDWT_CV; (e) CDI_K; (f) FLICM; (g) the proposed C_L1 method.
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seems ‘noisy’ since many unchanged background area are detected as changed areas.
The reason is that FCM clustering is completely based on the intensity and lacks spatial
regularity. With some denoising steps or spatial regularity constraint, the results of
PCA_K, CV, UDWT_CV, CDI_K, and FLICM in Figure 5(b–f) are much better than
Figure 5(a). However, there are still many spots that appear in the background areas.
The result of the proposed method in Figure 5(g) seems better than others since the
unchanged background areas are very clean without any spots and the changed areas
are better detected. The fine-structured changed areas are better detected by the
proposed method. In particular, the edge continuity of the changed areas and curve-
shaped changed areas are better preserved by the proposed method than others. For
example, by observing carefully the narrow curve-shaped area in the bottom of the
images, we find that Figure 5(g) detects a continuous changed area that is closer to the
ground truth (Figure 1(c)), while the other methods have broken this area. Table 1 shows
the performance measures corresponding to Figure 5. FCM performs worst, which has
the largest number of misclassified pixels FP+FN (13526) and the lowest PCC (0.8179)
and kappa coefficient (0.4780) measures among all. Our proposed method C_L1 per-
forms best, which has the smallest number of misclassified pixels FP + FN (2800) and the
highest PCC (0.9623) and kappa coefficient (0.8746) measures among all. For the other
five methods, the misclassified pixels FP + FN are in the range 4203–5783, the PCC

Table 1. Summary of change detection performance of different methods for the Yellow River
Estuary data set.

FP FN FP + FN PCC Kappa coefficient

FCM 9822 3704 13,526 0.8179 0.4780
PCA_K 2963 1959 4922 0.9337 0.7827
CV 310 4559 4869 0.9344 0.7476
UDWT_CV 2561 1782 4343 0.9415 0.8070
CDI_K 3267 2516 5783 0.9221 0.7428
FLICM 577 3626 4203 0.9434 0.7905
C_L1 1657 1143 2800 0.9623 0.8746

Table 2. Summary of change detection performance of different methods for the Bern data set.
FP FN FP + FN PCC Kappa coefficient

FCM 704 122 826 0.9909 0.7099
PCA_K 158 146 304 0.9966 0.8674
CV 87 219 306 0.9966 0.8758
UDWT_CV 1201 9 1210 0.9866 0.6485
CDI_K 76 209 285 0.9969 0.8675
FLICM 149 173 322 0.9964 0.8573
C_L1 108 165 273 0.9970 0.8773

Table 3. Summary of change detection performance of different methods for the Ottawa data set.
FP FN FP + FN PCC Kappa coefficient

FCM 1485 1775 3260 0.9679 0.8785
PCA_K 583 1901 2484 0.9755 0.9049
CV 273 1810 2083 0.9795 0.9198
UDWT_CV 1196 1071 2267 0.9777 0.9164
CDI_K 425 2125 2550 0.9749 0.9014
FLICM 257 1653 1910 0.9812 0.9267
C_L1 772 746 1518 0.9850 0.9439
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measures are roughly in the range 0.9221–0.9434 and the kappa coefficients are in the
range 0.7428–0.8070.

We remark that the edge continuity of C_L1 is benefited from curvelet regularization
in the proposed model due to the fact that curvelet is nearly optimal in describing
curves. Meanwhile, the robustness of the proposed method is enhanced by both the
curvelet regularization and the L1-norm fidelity term.

To illustrate the behaviour of our proposed algorithm C_L1, we show the values of
the soft membership function u for the Yellow River Estuary data during the iteration
process in Figure 6. The algorithm stops at iteration 388. In Figure 6(a–f), we show the
results of u for 10, 50, 100, 200, 300, and 388 iterations, respectively. From Figure 6 we
observe that the proposed algorithm is very robust and converges. Note that thresh-
olding Figure 6(f) by 0.5 gives the change detection map in Figure 5(f).

Figure 7 and Table 2 show the results and performance measures on the Bern data,
respectively. The result of UDWT_CV in Figure 7(d) has many spots in the background
areas and over-smooths the changed areas such that it has the largest number of
misclassified pixels FP+FN (1210), lowest PCC (0.9866) and lowest kappa coefficient
(0.6485) values. The result of FCM in Figure 6(a) also contains many little spots in the
background, which has better performance than UDWT_CV with FP+FN 826, PCC 0.9909,
and kappa coefficient 0.7099. The other five methods provide much better results and
are competitive, which have misclassified pixels in the range 273–322, PCC measures in
the range 0.9964–0.9970, and kappa coefficient in the range 0.8573–0.8773. Among
them, PCA_K contains a few little spots in the background areas and FLICM leads to a
little over-smoothing of the changed areas; see Figure 7(c,f), respectively. The result of
the proposed C_L1 in Figure 7(g) is the best among all with the least misclassified pixels
FP+FNN (273), the highest PCC (0.9970), and kappa coefficient (0.8773) measures. We
can also observe that the fine-structured changed areas are better detected by the
proposed methods than by others.

The change detection results and measures of the Ottawa data are displayed in Figure 8
and Table 3, respectively. The result of FCM in Figure 8(a) is somewhat noisy and leads to
lowest qualitymeasures among all (FP+FN= 3260, PCC = 0.9679, kappa coefficient = 0.8785).
PCA_K and CDI_K give similar results in Figure 8(b,e), respectively, with similar FCC and
kappa coefficient measures. CV, UDWT_CV, and FLICM lead to similar results as shown in
Figure 8(c,d,f), respectively, which are smoother than the results of FCM, PCA_K, and CDI_K
and have higher performance measures. Among all, the proposed C_L1 achieves the best
result in Figure 8(g) with the best visual quality and highest performance measures (FP
+FN = 1518, PCC = 0.9850, kappa coefficient = 0.9439). Again, we observe that C_L1 is good
at detecting fine-structured change areas. In particular, it can preserve edges very well and
can detect narrow curve-shaped changed areas very well without breaking them. See, for
instance, the curve-shaped changed area in the right top part of the image.

In terms of computational time, the proposed method C_L1 and UDWT_CV are more
time consuming than others since the segmentation part is more complicated in
modelling and algorithm. We report the iterations and computational time in each
test of our method. The Yellow River Estuary data: number of iterations = 388,
time = 100.92 s; the Bern data: number of iterations = 101, time = 28.71 s; the Ottawa
data: number of iterations = 164, time = 50.66 s. Actually, the computational time can be
shortened if the stopping criterion is properly adjusted. For instance, we can set
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maximum iteration as 100 or decrease ε in (37), which also gives good results. All the
experiments are performed under Windows 8 and MATLAB R2012a with Intel Core i7-
4500 CPU@1.80 GHz and 8 GB memory.

5. Concluding remarks

In this article, we have presented a novel change detection method for SAR images
based on a weighted difference image and a new variational soft segmentation method
in which curvelet regularization and L1-norm data term is used. Since curvelets are good
at representing images with both smooth region and edges, the proposed method
performs pretty well at preserving edge continuity and detecting curve-shaped struc-
tures. Compared with L2-norm fidelity term, which is widely used in k-means or FCM
methods, L1-norm fidelity is more robust to non-Gaussian-type noise and outliers.
Benefited from both the curvelet regularization and L1-norm fidelity, the proposed
method is robust to the noise presented in the SAR difference image. Numerically, we
build an effective iterative algorithm to solve the variational model based on the split
Bregman technique. The experimental results show that the proposed method outper-
forms some existing methods and is quite promising in change detection.

In the future work, we will study the problem of automatic selection of parameters
and speed up the proposed algorithm by including some parallel computing techniques.
We will also consider generalization of the variational segmentation model to multi-
phase image segmentation problem, that is, the number of regions is larger than two.
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Appendix

Proof of Theorem 1

According to (9)–(13), similar to the derivation of solutions for these sub-problems, we have

ckþ1
1 $ ck1 ¼

ð

Ω
w1Iukdx

ð

Ω
w1ukdx

$ ck1; (46)
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ckþ1
2 $ ck2 ¼

ð

Ω
w2I 1$ uk

+ ,
dx

ð

Ω
w2 1$ ukð Þdx

$ ck2; (47)

ukþ1 $ uk 2 CT dk $ bk
! "

$ θrkþ1 $ @χU ukþ1+ ,
$ uk; (48)

dkþ1 $ dk ¼ S Cukþ1 þ bk; 1=μ
! "

$ dk; (49)

bkþ1 $ bk ¼ Cukþ1 $ dkþ1; (50)

where rkþ1 ¼ w1 I$ ckþ1
1

+ ,2 $ λ2 I$ ckþ1
2

+ ,2
.

Since limk!1 Zkþ1 $ Zk+ ,
¼ 0, the right-hand side of each equality in (25)–(29) goes to zero as

k→∞. Assume the accumulation point of {Zk} is c(1; c
(
2;u

(;d(;b(+ ,
. Thus by letting k→∞, we obtain

ð

Ω
w1Iu(dx

ð

Ω
w1u(dx

$ c(1 ¼ 0; (51)

ð

Ω
w2I 1$ u(ð Þdx

ð

Ω
w2 1$ u(ð Þdx

$ c(2 ¼ 0; (52)

$ CT d( $ b(ð Þ þ θr( þ @χU u(ð Þ þ u(’ 0; (53)

S Cu( þ b(; 1=μð Þ $ d( ¼ 0; (54)

Cu( $ d( ¼ 0: (55)

It is obvious that (30) and (31) are equivalent to (19) and (20), respectively. From (34), we have
u( ¼ CTd(. Substituting this equality into (32), we get (21). Since (33) is equivalent to

d( ¼ argmin
ð

Ω
jdjdx þ μ

2

ð

Ω
Cu( þ b( $ dð Þ2dx; (56)

we have 0 2 @jd(j$ μ Cu( þ b( $ d(ð Þ. By using (34), we can derive (22). Therefore, the accumula-
tion point of {Zk} satisfies the KKT condition (19)-(23).

We have proved the statement concerning the sequence fZkg1k¼1 and problem (19). The
statement concerning the sequence fXkg1k¼1 and problem (16) follows directly from the equiva-
lence between the two problems. This completes the proof.
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