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a b s t r a c t

Blind image deconvolution is a highly ill-posed problem. As a generalization of the well
known Weiner filter, the existing iterative Weiner filter (IWF) method for blind image
deconvolution is unstable and suffers from serious ringing artifacts. To overcome these
drawbacks, in this paper,wepropose twonovel regularized iterativeWeiner filtermethods.
We assume that both the latent image and the convolution kernel can be estimated by
applying two different filters on the observed image. To estimate the filters, we propose
to minimize energy functionals combined by the mean square errors with some regular-
ization terms. Both H1 and total variation (TV) regularization are considered. By applying
alternating minimization method and operator splitting technique, we derive iterative
algorithms for each regularization method. The proposed methods are effective for blind
deconvolution of Gaussian blurred images which is widely observed in real applications
such as microscopic images. Numerical experimental results on both synthetic images
and real microscopic images are presented. The comparisons show that the proposed
regularized algorithms perform better than the closely related state-of-the-art methods
in terms of peak signal-to-noise ratio (PSNR) and visual quality.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Blind image deconvolution is the problem of recovering a sharp version of an input blurry image when the blur
kernel is unknown [1]. Blind deconvolution is performed for image restoration in many applications such as astronomical
speckle imaging, remote sensing, and medical imaging [2]. Mathematically, the blind image deconvolution problem can be
formulated as

y = h ⋆ x+ η (1)

where ⋆ represents the two-dimensional convolution operation, y is the observed blurred image, η is the additive white
Gaussian noise, x is the latent sharp image and h is the blur kernel whose support is small compared to the image size. The
problem is highly ill-posed since there are infinite pairs of solutions. To get the ideal solution, some additional assumptions
on x and hmust be introduced.

In recent years, a wide range of blind deconvolution methods have been developed as generalization of nonblind
deconvolution methods. The earliest classic methods for nonblind image deconvolution include the Weiner filter [3,4]
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and the Richardson–Lucy algorithm [5,6]. The Weiner filter works in the frequency domain, attempting to minimize the
impact of deconvolved noise at frequencies. TheWiener filter nonblind deconvolution method has widespread use in image
deconvolution applications, as the frequency spectrum of most visual images is fairly well behaved and may be estimated
easily. Later, Ayers andDainty generalized theWeiner filter to blind image deconvolution by estimating both the latent image
and the blur kernel in a similar way as the Weiner filter, which is essentially an iterative Weiner filter (IWF) algorithm [7].
The IWF algorithm is simple and effective for some special images. However, the disadvantage of IWF is that it is not stable
and has serious ringing artifacts in many applications. To overcome these drawbacks, Tofighi et al. proposed a new blind
deconvolution algorithm for microscopic images based on IWF by adding two convex sets constraints [8]. One is phase
constraint in the Fourier domain and the other is epigraph set of total variation (ESTV) constraint in the spatial domain.
The constraints are implemented by projection on convex sets. This algorithm is named as IWF-Phase&ESTV in this paper.
IWF-Phase&ESTV is more stable than IWF. However, the restoration quality is still limited. In addition, IWF with only phase
constraint or ESTV constraint are also studied in [8], which are named as IWF-Phase and IWF-ESTV respectively. Similar
to the Weiner filter algorithm, Richardson–Lucy algorithm is generalized to blind deconvolution [9,10] and regularization
versions are also studied [11–13].

Another category of methods for blind deconvolution are based on variational models. Thesemodels commonly include a
regularization term and a data fitting term. In the regularization term, one requires that the image should follow some prior
distribution. The widely used image priors are sparsity of image under some transform such as gradient transform, wavelet
transform, tight frame transform or patch based transform. Gradient sparsity prior is studied in many works with different
norms. In [14], H1 regularization is considered for both the latent image x and the blur kernel h. In [15], total variation (TV)
regularization [16] is used for x and h. A normalized sparsity measure with ℓ1/ℓ2 norm is considered in [17]. Nonconvex
ℓp, 0 < p < 1 norm is used for gradient of x in [18]. Unnatural ℓ0 norm for gradient of x is considered in [19]. ℓ0 norm of both
gradient and intensity prior for x is proposed in [20] for text blind image deconvolution. Sparsity of framelet coefficients
regularization are adopted in [21,22]. Patch based low-rank prior is considered for both the image x and its gradient [23]. ℓ2
norm prior is commonly used for blur kernel h in the above references. Additionally, mean square error term is commonly
used for data fitting. Numerically, gradient descentmethod can be used [14,15,24]. To speed up, fast alternatingminimization
algorithms are designed for blind deconvolution based on the split Bregman (SB) method or alternating direction method
of multipliers (ADMM) [25,22,26,20]. The other optimization techniques [27–30] can also be incorporated to solve these
problems in real application. Remarkable results are reported for some of the above variationalmethods especially for sparse
blur kernel. However, they are unlikely to work well for Gaussian blurred images such as the microscopic images in which
the kernel is dense.

In order to increase stability and suppress ringing artifacts in the IWF type method, in this paper, we propose two novel
regularized iterative Weiner filter methods for blind deconvolution of microscopic images. We reformulate the IWF based
blind deconvolution method into a variational model such that it is flexible for us to add regularization terms. We consider
both H1 and TV regularization terms incorporating the nonnegative and normalization constraints of blur kernel. By using
alternating minimization and ADMM algorithm, we derive efficient algorithms for both models. Experiments show that the
proposed algorithms are superior to the closely related methods in terms of restoration quality and stability.

The paper is organized as follows. In Section 2, we review the IWF algorithm and its extensions. In Section 3, we propose
our blind deconvolution variational models with H1 and TV regularization based on IWF. Then we derive the iterative
algorithms of the proposed models. We present our experimental results in Section 4 and give the conclusion in Section 5.

2. IWF algorithm and its extensions

Denote n = (n1, n2) as the coordinate in spatial domain and ω = (ω1, ω2) as the coordinate in frequency domain. Then
the spatial image degradation model (1) can be rewritten as

y(n) = h(n) ⋆ x(n)+ η(n). (2)

We know from the convolution theorem that the Fourier transform of the product of two functions in the spatial domain is
the convolution of the transforms of the two functions in the frequency domain. Thus by applying the Fourier transform on
Eq. (2), we get the image degradation model in the frequency domain

Y (ω) = H(ω)X(ω)+ N(ω) (3)

whereY ,H ,X andN denote the Fourier transformsof y, h, x andη, respectively. The IWFalgorithm [7] for blinddeconvolution
updates the latent image x and the blur kernel h iteratively in a Weiner filter-like equation, which is given in the following
Algorithm 1.

Note that in Algorithm 1, F denotes the Fourier transform, F−1 denotes the inverse Fourier transform, α is a small real
number, and ∗ denotes the conjugate operator. In Algorithm 1, two projections on convex sets C1 and C2 are required to
impose the image constraint and kernel constraint respectively, which are defined as

C1 := {x|0 ≤ x(n) ≤ 1,∀ n} (4)
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Algorithm 1 IWF algorithm for blind deconvolution
• Initialization: X0

= F(x0),H0
= F(h0).

• For k = 0, 1, . . ., repeat until stopping criterion is reached

Xk+1
= FP1F−1

(
Hk∗Y

|Hk|2+α/|Xk|2

)
,

Hk+1
= FP2F−1

(
Xk∗Y

|Xk|2+α/|Hk|2

)
.

• Output: xk+1 = F−1(Xk+1), hk+1
= F−1(Hk+1).

and

C2 := {h|h ≥ 0,
∑
n

h(n) = 1}. (5)

The projection operators on sets C1 and C2 are simplified as

P1 = ProjC1
,P2 = ProjC2

.

Based on the observation that most blurring functions in microscopy images are symmetric with respect to the origin
and such that the phase of Fourier transform is not modified, the IWF-Phase algorithm [8] improves the IWF algorithm by
adding a phase constraint. Meanwhile, TV constraint in the spatial domain for both the latent image and the blur kernel can
also be incorporated, which is called IWF-ESTV [8]. If both constraints are used, the algorithm is called IWF-Phase&ESTV [8].
Both constraints are implemented directly by projection on convex sets. The details are omitted here.

3. The proposed methods

In this section, we propose the regularized iterative Weiner filter methods with H1 and TV regularization respectively,
which are called IWF-H1 and IWF-TV for short.

Let us give the basic assumption of our methods. In the image degradation model (1), h and x play a similar role since the
convolution can be changed in the continuous setting, that is, h ⋆ x = x ⋆ h. Inspired by the basic idea of the Weiner filter
for the nonblind deconvolution problem, we assume that both the latent sharp image and the blur kernel can be obtained
by convolution the observed image with unknown filters g1 and g2, respectively. In other words, we assume that the latent
image and the blur kernel can be estimated by

x = g1 ⋆ y, h = g2 ⋆ y. (6)

such that x and h satisfy the constraints x ∈ C1 and h ∈ C2, where g1 and g2 are filters. Our aim is to get the filters g1 and
g2, and then recover x and h. In the following subsections, we give the details of our regularization methods for blind image
deconvolution.

3.1. IWF-H1

To estimate the filters g1 and g2, we propose to minimize the square errors of the assumption (6) and incorporate H1

regularization terms, which gives the following energy minimization model

min
g1,g2

{
∥x− g1 ⋆ y∥22 + ϵ∥g1 ⋆ x∥22 + λ∥∇(g1 ⋆ x)∥22+
∥h− g2 ⋆ y∥22 + ϵ∥g2 ⋆ h∥22 + λ∥∇(g2 ⋆ h)∥22

}
(7)

where∇ = (∇h,∇v) is the gradient operator combined by difference operators along horizontal and vertical directions. The
last two terms in each row are regularization terms which ask that g1 ⋆ x and g2 ⋆ h should be smooth in H1 sense. Note that
our regularization terms are different from those widely used in existing literatures for blind deconvolution. The existing
regularization usually performs on the latent image x and the blur kernel h directly. While in model (7) we regularize the
filtered version of x and h such that these terms can contribute to the estimation of g1 and g2.

In the Fourier domain, model (7) is equivalent to

min
G1,G2

{
∥X − G1Y∥22 + ϵ∥G1X∥22 + λ∥DG1X∥22+
∥H − G2Y∥22 + ϵ∥G2H∥22 + λ∥DG2H∥22

}
(8)

where G1,G2,D = (Dh,Dv) denote the Fourier transforms of g1, g2 and ∇ = (∇h,∇v) respectively, and

∥DG1X∥22 = ∥DhG1X∥22 + ∥DvG1X∥22.



428 F. Li et al. / Journal of Computational and Applied Mathematics 336 (2018) 425–438

Firstly, we derive the optimal condition for G1 in the following. Assume that the latent image x and the noise η are
independent, i.e., ⟨X,N⟩ = 0. By using Eq. (3), we have the equality

∥X − G1Y∥22 = ∥(1− G1H)X∥22 + ∥G1N∥22
Then the subproblem of G1 is equivalent to

min
G1

{
∥(1− G1H)X∥22 + ∥G1N∥22 + ϵ∥G1X∥22 + λ∥DG1X∥22

}
. (9)

By taking theWirtinger derivative of functional in (9) with respect to G1 and setting the result to be zero, we get the optimal
condition of G1 as follows

− H(1− G∗1H
∗)|X |2 + G∗1|N|

2
+ ϵG∗1|X |

2
+ λG∗1|D|

2
|X |2 = 0

where |D|2 = |Dh|
2
+ |Dv|

2. For simplicity, we set the spectral of |N|2 to be a constant α since the noise is white Gaussian
noise in (1). Then the above equality gives the solution of G∗1

G∗1 =
H

|H|2 + α/|X |2 + ϵ + λ|D|2
.

Equivalently, we have

G1 =
H∗

|H|2 + α/|X |2 + ϵ + λ|D|2
. (10)

By a similar argument, we can derive the solution of G2

G2 =
X∗

|X |2 + α/|H|2 + ϵ + λ|D|2
. (11)

Then, X and H can be estimated alternatingly by applying filter G1 and G2 on the given data Y respectively, i.e.,

X = G1Y =
H∗Y

|H|2 + α/|X |2 + ϵ + λ|D|2
, (12)

H = G2Y =
X∗Y

|X |2 + α/|H|2 + ϵ + λ|D|2
. (13)

Finally, by incorporating the convex constraints of the latent image and the blur kernel as in the IWF algorithm, we get
the following H1 regularized version in Algorithm 2, which is called the IWF-H1 algorithm.

Algorithm 2 IWF-H1 algorithm for blind deconvolution
• Initialization: X0

= F(x0),H0
= F(h0).

• For k = 0, 1, . . ., repeat until stopping criterion is reached

Xk+1
= FP1F−1

(
Hk∗Y

|Hk|2+α/|Xk|2 + ϵ + λ|D|2

)
,

Hk+1
= FP2F−1

(
Xk+1∗Y

|Xk+1|2+α/|Hk|2 + ϵ + λ|D|2

)
.

• Output: xk+1 = F−1(Xk+1), hk+1
= F−1(Hk+1).

Note that in the IWF-H1 algorithm, the updated Xk+1 is used in the updating of Hk+1. While in the IWF algorithm, Xk is
used in the updating of Hk+1. As observed in our experiments, using Xk+1 in the updating of Hk+1 increases stability of the
algorithm.

3.2. IWF-TV

TV regularization was firstly introduced for image denoising in the seminal work [16], and since then it has been applied
successfully in many image processing applications including nonblind or blind image deconvolution [31,15,11,25,24,8,
32,33]. In this subsection, we consider to use the TV regularization instead of the H1 regularization in our framework. That
is, we propose the following energy minimization model

min
g1,g2

{
∥x− g1 ⋆ y∥22 + ϵ∥g1 ⋆ x∥22 + λ∥∇(g1 ⋆ x)∥1+
∥h− g2 ⋆ y∥22 + ϵ∥g2 ⋆ h∥22 + λ∥∇(g2 ⋆ h)∥1

}
(14)

where ∥∇(g1 ⋆ x)∥1 and ∥∇(g2 ⋆ h)∥1 are TV regularization terms.
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For this model, we have no closed-form solutions for g1 and g2. Hence we use the operator splitting technique to split the
original problem into easier subproblems.We remark that the ADMM algorithm and the primal–dual type algorithm [34,35]
are very popular and can be used to derive efficient algorithms for our problem. Since the performances of both algorithms
are similar, we choose ADMM in this paper. Note that the problems for g1 and g2 are separable. We here only consider the
subproblem of g1

min
g1

{
∥x− g1 ⋆ y∥22 + ϵ∥g1 ⋆ x∥22 + λ∥∇(g1 ⋆ x)∥1

}
. (15)

Firstly, by adding extra variable u1, we rewrite (15) as a constrained problem

min
g1

{
∥x− g1 ⋆ y∥22 + ϵ∥g1 ⋆ x∥22 + λ∥u∥1

}
s.t. ∇g1 ⋆ x = u1.

Using the ADMMmethod, we get the following iteration scheme

(g1, u1)← argmin
g1,u1

L(g1, u1, v1) (16)

v1 ← v1 +∇g1 ⋆ x− u1 (17)

where

L = ∥x− g1 ⋆ y∥22 + ϵ∥g1 ⋆ x∥22 + λ∥u∥1 + µ∥∇g1 ⋆ x− u1 + v1∥
2
2

and µ is a constant parameter. The problem (16) is then solved by the following alternating minimization method.

3.2.1. Solving g1-subproblem
For fixed u1, the subproblem for g1 can be rewritten as

min
G1
∥X − G1Y∥22 + ϵ∥G1X∥22 + µ∥DG1X − U1 + V1∥

2
2 (18)

in the Fourier domain, where U1 and V1 are Fourier transforms of u1 and v1. By taking the Wirtinger derivative of the
functional in (18) with respect to G1 and setting the result to be zero, we get the closed-form solution

G∗1 =
H + µDX(U∗−V∗)

|X |2

|H|2 + σ2

|X |2
+ ϵ + µ|D|2

.

3.2.2. Solving u1-subproblem
For fixed g1, the subproblem for u1 is

min
u1

λ∥u1∥1 + µ∥∇g1 ⋆ x− u1 + v1∥
2
2.

It is well known that the closed-form solution of this subproblem can be expressed using the soft shrinkage [36,37], that is,

u1 = shrink(∇g1 ⋆ x+ v1, τ )

where τ = λ
2µ and shrink is the soft shrinkage operator defined as

shrink(v, τ ) := max (|v| − τ , 0) sign(v).

Similar as the above calculation, by using two extra variables u2 and v2, which play the similar role as u1 and v1, we can
get the closed-form solutions of g2 and u2 respectively.

Finally, by incorporating the convex constraints of the latent image and the blur kernel, we get the proposed IWF-TV
algorithm for blind image deconvolution in Algorithm 3. Note that in Algorithm 3, the capital letters and corresponding
small letters denote the Fourier transform pairs. For instance, Xk+1 and xk+1 is a Fourier transform pair.

We remark that other regularization techniques such as tight framewavelets [38], nonlocal TV [39], high order TV [40,41]
can also be used in the proposed variational models. The algorithms will be different for each regularization. We leave it as
our future work.

4. Experimental results

In this section, we give the experimental results of the proposed algorithms and compare them with the other six
methods. Four of them are IWF type methods including IWF in [7], IWF-Phase, IWF-ESTV, IWF-Phase&ESTV in [8], which are
the most closely related algorithms with ours. The other two methods are the state-of-the-art blind image deconvolution
methods including the normalized sparsity measure based method in [17] and the ℓ0 norm based method in [20].
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Algorithm 3 IWF-TV algorithm for blind deconvolution
• Initialization: x0, h0.

• For k = 0, 1, . . ., repeat until stopping criterion is reached

Gk+1
1 =

Hk∗
+ µD∗Xk∗(Uk

1 − V k
1 )/|X

k
|
2

|Hk|2+α/|Xk|2 + ϵ + µ|D|2
,

xk+1 = P1F−1(Gk+1
1 Y ),

uk+1
1 = shrink(∇gk+1

1 ⋆ xk+1 + vk
1, τ ),

vk+1
1 = vk

1 +∇g
k+1
1 ⋆ xk+1 − uk+1

1 ,

Gk+1
2 =

Xk+1∗
+ µD∗Hk∗(Uk

2 − V k
2 )/|H

k
|
2

|Xk+1|2+α/|Hk|2 + ϵ + µ|D|2
,

hk+1
= P2F−1(Gk+1

2 Y ),

uk+1
2 = shrink(∇gk+1

2 ⋆ hk+1
+ vk

2, τ ),

vk+1
2 = vk

2 +∇g
k+1
2 ⋆ hk+1

− uk+1
2 .

• Output: xk+1, hk+1.

The peak signal-to-noise ratio (PSNR) is adopted to measure the quality of the blind deconvolution results, which is
defined as

PSNR(x, xtrue) = 10 log 10

(
2552

1
st ∥x− xtrue∥22

)
where x is the restored image and xtrue is the true image, s and t are numbers of row and column of the image. Note that
PSNR is a standard image quality measure which is widely used in comparing image restoration results.

We initialize h0
= δ and x0 = y in our algorithms, where δ is the Dirac function. Our algorithms are not sensitive to the

initial guess of the image and the kernel. The stopping criterion for our algorithms is that the maximum iteration is reached
or the relative error between the successive iterate of the restored image satisfies the following inequality

∥xk+1 − xk∥2
∥xk+1∥2

< 10−4.

The maximum iteration is set as 300 for the gray scale image, and 50 for the color image. The other parameters are set
as follows. IWF-H1: α = 10−3, λ = 10−5, ϵ = 0 for the gray image and ϵ = 10−5 for the color image; IWF-TV:
α = 10−3, ϵ = 10−5, λ = 10−7, µ = 0.5× 10−6. The parameters of the proposed algorithms are chosen by trial and error.
The rationales on the choice of parameters are as follows. In our algorithms, α denotes the spectral of |N|2 which can be
estimated from the noise level. µ is the penalty parameter in ADMM for equality constraints which can be chosen according
to the general ADMM algorithm. λ and ϵ are regularization parameters which are very important in our algorithms. Bigger λ

and ϵ lead to smoother deblurred images andmore stability of the algorithms. However, too big λ and ϵ will oversmooth the
image details and decrease the restoration quality. For methods IWF, IWF-Phase, IWF-ESTV and IWF-Phase&ESTV, we use
the MATLAB source code from the authors in [8].1 For methods in [17] and [20], we use the MATLAB source codes from the
authors.2,3 For fair comparison, the parameters are tuned to get optimal results for eachmethod. To reduce ringing artifacts,
we add black boundaries with 50 pixel in each side of the test images in all experiments.

All the experiments are performed under Windows 8 and MATLAB R2012a with Intel Core i7-4500 CPU@1.80 GHz and 8
GB memory. The programming language is MATLAB for all methods for fair comparison.

4.1. Tests on simulated images

We use two simulated data sets in our experiments which are widely used in literatures. The first data set is shown
in Fig. 1. Fig. 1(a) is the standard test image Lena. Fig. 1(b) is the blurry version of Fig. 1(a). The blur kernel is Gaussian
kernel generated byMatlab routine fspecial(‘gaussian’, 30, 5). That is, the kernel follows Gaussian distribution with standard
deviation 5 and the kernel size is 30× 30.

1 http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html.
2 http://cs.nyu.edu/~dilip/research/blind-deconvolution/.
3 https://sites.google.com/site/jspanhomepage/l0rigdeblur.

http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html
http://cs.nyu.edu/%7Edilip/research/blind-deconvolution/
https://sites.google.com/site/jspanhomepage/l0rigdeblur
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(a) (b) PSNR= 22.66 dB.

Fig. 1. The first simulated test data set. (a) Lena image; (b) the blurred image degraded by Gaussian blur with standard deviation 5 and size 30× 30.

Fig. 2. The second simulated test data set. (a)–(d) are some of the sample fluorescent labeled mouse liver tissue microscopic images: (a) Im-5; (b) Im-6; (c)
Im-7; (d) Im-8; (e)–(h) are the blurred images of (a)–(d) degraded by Gaussian blur with standard deviation 3 and size 20× 20.

The test images in the second data set are microscopic images. Note that following [8,42,43], we use rotationally
symmetric Gaussian kernel to simulate the blur kernel in microscopic images. Fig. 2 shows some of the fluorescent labeled
mouse liver tissue microscopic images in the second test data set, which are also used in [8] and [44]. Fig. 2(a)–(d) are the
microscopic images and Fig. 2(e)–(h) are the corresponding simulated blurred images, in which the blur kernel is generated
by fspecial(‘gaussian’, 20, 3).

In Fig. 3, we display the blind deconvolution results of eight methods applied on the blurred Lena image in Fig. 1(b). The
PSNR values and computational time are reported below the images or in the caption. For IWF, IWF-Phase, IWF-ESTV, and
IWF-Phase&ESTV, the algorithms stop when the iterations attain the maximum 300. Actually, the relative error is relatively
large for these fourmethods and cannot reach the tolerance. For the proposed IWF-H1 and IWF-TV, the algorithms stopwhen
the relative error attains the tolerance. The iterations are 245 and 112 respectively. By carefully observing the deconvolution
results, we find that the results of IWF, IWF-Phase and IWF-ESTV, as shown in Fig. 3(a)–(c), have serious ringing artifacts. The
result of IWF-Phase&ESTV in Fig. 3(d) is better than the first three, in which the ringing artifacts are alleviated. The results
of methods in [17] and [20] are oversmoothed, see the edges and the details of the hair in Fig. 4(e)–(f). The results of the
proposed algorithms are displayed in Fig. 3(g)–(h), inwhich the edges and details arewell recovered and the ringing artifacts
are well suppressed. In terms of image quality measure, the proposed IWF-H1 has the highest PSNR value among all, and
IWF-TV is the second best.

In Fig. 4, we display the PSNR vs. Iterations curves for six IWF typemethods corresponding to some of the results in Fig. 3.
The PSNR curves of IWF, IWF-Phase, IWF-ESTV, and IWF-Phase&ESTV are seriously oscillating which implies that these four
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(a) PSNR= 25.09 dB. (b) PSNR= 21.81 dB. (c) PSNR= 24.99 dB.

(d) PSNR= 25.37 dB. (e) PSNR= 25.57 dB. (f) PSNR= 25.04 dB.

(g) PSNR= 26.40 dB. (h) PSNR= 25.81 dB.

Fig. 3. Test on the blurred Lena image Fig. 1(b). (a) The result of IWF, iterations= 300, computational time= 170 s; (b) the result of IWF-Phase, iterations=
300, computational time= 228 s; (c) the result of IWF-ESTV, iterations= 300, computational time= 335 s; (d) the result of IWF-Phase&ESTV, iterations=
300, computational time= 375 s; (e) the result of method in [17], computational time= 97 s; (f) the result of method in [20], computational time= 161 s;
(g) the result of the proposed IWF-H1 , iterations= 245, computational time= 146 s; (h) the result of the proposed IWF-TV, iterations= 112, computational
time= 172 s.

algorithms are not stable, see Fig. 4(a)–(d). Accordingly, the curves of relative error vs. iterations are also oscillating. By
contrast, the PSNR curves of the proposed algorithms IWF-H1 and IWF-TV in Fig. 4(e)–(f) are smooth and monotonically
increasing, which implies the stability and the convergence of the proposed algorithms.

In the second test, we use 14 blurred microscopic images. Some of the images are displayed in Fig. 2. We report the PSNR
values of eight methods in Table 1 and display the deblurred images of im-7 in Fig. 5 as an example. In Table 1, the highest
PSNR values are marked in bold. The best PSNR are achieved by the proposed IWF-H1 or IWF-TV for each image. Averagely,
the PSNR values of IWF-H1 and IWF-TV are very close, which are at least 2 dB higher than the othermethods. Among the four
methods including IWF, IWF-Phase, IWF-ESTV and IWF-Phase&ESTV, IWF-Phase&ESTV performs the best while IWF is the
poorest. The methods in [17] and [20] have much lower PSNR values than others, which implies that they are not suitable
for deconvolution of Gaussian blurred images.

For visual comparison, in Fig. 5, we display the deconvolution results of IWF, IWF-Phase&ESTV, the methods in [17]
and [20], and the proposed algorithms. As shown in Fig. 5(a), the ringing artifacts are serious in the result of IWF. In the
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Fig. 4. The comparison of PSNR vs. Iterations curves of different methods. (a) IWF; (b) IWF-Phase; (c) IWF-ESTV; (d) IWF-Phase&ESTV, (e) IWF-H1 , (f)
IWF-TV.

(a) PSNR= 40.37. (b) PSNR= 42.59. (c) PSNR= 35.60.

(d) PSNR= 33.62. (e) PSNR= 44.79. (f) PSNR= 44.70.

Fig. 5. Test on simulated blurry microscopic images in Fig. 2(g). (a) The result of IWF; (b) the result of IWF-Phase&ESTV; (c) the result of method in [17];
(f) the result of method in [20]; (g) the result of the proposed IWF-H1; (h) the result of the proposed IWF-TV.
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Fig. 6. The estimated kernels of different methods for the blurred microscopic image in Fig. 2(g). (a) The true kernel; (b) the estimated kernel of IWF,
MSE= 1.05× 10−6; (c) the estimated kernel of IWF-Phase&ESTV, MSE= 7.85× 10−7; (d) the estimated kernel of method in [17], MSE= 4.03× 10−6; (e)
the estimated kernel of method in [20], MSE= 5.33× 10−6; (f) the estimated kernel of the proposed IWF-H1 , MSE= 1.90× 10−7; (g) the estimated kernel
of the proposed IWF-TV, MSE= 1.77× 10−7 .

result of IWF-Phase&ESTV in Fig. 5(b), the ringing artifacts is slight but visible. The methods in [17] and [20] oversmooth
the images, see Fig. 5(c)–(d). The results of the proposed algorithms in Fig. 5(e)–(f) seem satisfactory, which also have much
higher PSNR values than others.

In Fig. 6, we display the estimated blur kernels for Im-7. Fig. 6(a) is the true Gaussian kernel with standard deviation 3
and size 20× 20. Fig. 6(b)–(g) are the estimated kernels by six methods corresponding to the results in Fig. 5. Visually, the
estimated kernels by the proposed methods are more close to the true kernel, see Fig. 6(f)–(g). For quantitative comparison,
we calculate themean square errors (MSE) of the estimated kernels and report them in the figure caption. Note that MSE is a
standardmeasure for the estimating errors of kernels when the kernels are normalized and have the same size [45]. See [46]
for other measures. It is obvious that the MSE of the proposed methods are much smaller than others, which implies that
our methods give better estimation of the blur kernel.

4.2. Tests on real microscopic images

In this subsection, two real microscopic images as displayed in Fig. 7 are tested, which are also used in [8]. Fig. 7(a) was
acquired on a confocal microscope with opened aperture. It has good signal intensity but gets blurred by the contributions
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Fig. 7. Two real microscopic images for test.

Fig. 8. Test on the real microscopic image in Fig. 7(a). (a) The result of IWF; (b) the result of IWF-Phase&ESTV; (c) the result of method in [17]; (d) the result
of method in [20]; (e) the result of the proposed IWF-H1; (f) the result of the proposed IWF-TV. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Table 1
Deconvolution results for microscopic images degraded by Gaussian blur with standard deviation 3 and size 20 × 20. The PSNR (dB) values are reported
for eight methods.

Image Blurred IWF IWF- IWF- IWF-Phase [17] [20] IWF-H1 IWF-TV
Phase ESTV & ESTV

im-1 35.58 35.36 35.35 35.54 36.07 33.78 28.82 40.01 39.87
im-2 34.93 35.51 35.24 35.82 36.69 35.10 31.64 38.31 38.45
im-3 34.43 36.12 36.51 36.74 37.58 32.57 31.92 38.39 38.34
im-4 34.14 36.40 36.37 36.59 37.89 33.26 30.62 37.88 37.93
im-5 36.42 41.16 41.18 41.43 41.76 35.00 31.30 42.80 42.74
im-6 35.23 38.74 39.51 39.34 40.31 34.25 31.74 40.72 40.76
im-7 38.55 40.37 41.16 40.63 42.59 35.60 33.62 44.79 44.70
im-8 35.94 37.89 38.70 38.33 39.82 36.26 33.64 43.17 43.04
im-9 34.84 37.20 36.23 37.38 36.66 36.06 30.52 41.06 41.05
im-10 33.90 38.03 36.95 38.27 38.50 34.46 32.95 40.42 40.39
im-11 35.34 38.54 37.39 38.81 38.78 35.71 36.47 42.99 42.95
im-12 34.48 36.24 36.20 36.57 37.28 35.09 33.83 39.92 38.06
im-13 37.12 40.00 39.36 40.29 40.55 35.50 32.79 42.30 42.32
im-14 37.59 40.02 40.37 40.65 42.28 34.19 35.12 44.68 44.90
Average 35.61 37.97 37.90 38.31 38.98 34.77 32.50 41.10 41.11

Fig. 9. Test on the real microscopic image in Fig. 7(b) (the subregion with rectangle is displayed). (a) The result of IWF; (b) the result of IWF-Phase&ESTV;
(c) the result of method in [17]; (d) the result of method in [20]; (e) the result of the proposed IWF-H1; (f) the result of the proposed IWF-TV.

of defocused objects, which are characteristic for widefieldmicroscopes. Fig. 7(b) is a slice of immunofluorescence z-stacked
images of CD133 positive Huh7 liver caner cells, see [8] for more details. As can be seen, the real microscopic images are very
blurry.

In Fig. 8, we show the blind deconvolution results of Fig. 7(a) by applying six methods including IWF, IWF-Phase&ESTV,
themethods in [17] and [20], the proposed IWF-H1 and IWF-TV for visual comparison. Note that Fig. 8(a)–(b) are copied from
[8]. Fig. 8(a) seems not converge. In Fig. 8(b), the blue objects seem still blurry. Fig. 8(c)–(d) have clear artifacts. The results
of our proposed methods in Fig. 8(e)–(f) are satisfactory, both the green objects and the blue objects are well deblurred with
sharp edges.

In Fig. 9, we show the blind deconvolution results of Fig. 7(b) by six different methods. For better visualization, we show
a subregion which is marked by white rectangle in Fig. 7(b) for detail comparison. We can observe that Fig. 9(a)–(b) are still
somewhat blurry and ring artifacts are obvious in Fig. 9(c)–(d). It seems that the proposedmethods IWF-H1 and IWF-TV give
better deblurring results than others, see Fig. 9(e)–(f). For instance, the edges of the green spots are sharper than others and
the ring artifacts are negligible.
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5. Conclusion

The traditional IWF algorithm for blind image convolutions has two disadvantages: it is not stable and has serious ringing
artifacts in many applications. To overcome the drawbacks, in this work, we have extended the IWF method by adding H1

and TV regularization terms in an energy formulation and get two algorithms. Numerical results show that the proposed
regularization algorithms are stable and can suppress ringing artifacts successfully. A limitation of the proposed methods,
as well as the other IWF type methods, is that it is less effective for images with nonuniform black boundaries. In the future
work, wewill introduce other regularization techniques and combine ourmethods with other blind deconvolutionmethods
to further enhance the image restoration quality and overcome its limitation. Theoretically, we will study the convergence
behavior of the proposed algorithms.
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